ArticleOriginal scientific text
Title
Spectrum of commutative Banach algebras and isomorphism of C*-algebras related to locally compact groups
Authors 1
Affiliations
- Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
Abstract
Let A be a semisimple commutative regular tauberian Banach algebra with spectrum
. In this paper, we study the norm spectra of elements of and present some applications. In particular, we characterize the discreteness of in terms of norm spectra. The algebra A is said to have property (S) if, for all , φ has a nonempty norm spectrum. For a locally compact group G, let denote the C*-algebra generated by left translation operators on and denote the discrete group G. We prove that the Fourier algebra has property (S) iff the canonical trace on is faithful iff . This provides an answer to the isomorphism problem of the two C*-algebras and generalizes the so-called "uniqueness theorem" on the group algebra of a locally compact abelian group G. We also prove that is amenable iff G is amenable and the Figà-Talamanca-Herz algebra has property (S) for all p.
Keywords
spectrum, synthesizable ideal, locally compact group, Fourier algebra, Figà-Talamanca-Herz algebra, amenability
Bibliography
- E. Bédos, On the C*-algebra generated by the left translation of a locally compact group, Proc. Amer. Math. Soc. 120 (1994), 603-608.
- M. Bekka, E. Kaniuth, A. T. Lau and G. Schlichting, On C*-algebras associated with locally compact groups, ibid. 124 (1996), 3151-3158.
- M. Bekka, A. T. Lau and G. Schlichting, On invariant subalgebras of the Fourier-Stieljes algebra of a locally compact group, Math. Ann. 294 (1992), 513-522.
- M. Bekka and A. Valette, On duals of Lie groups made discrete, J. Reine Angew. Math. 439 (1993), 1-10.
- J. J. Benedetto, Spectral Synthesis, Academic Press, New York, 1975.
- C. Chou, Almost periodic operators in VN(G), Trans. Amer. Math. Soc. 317 (1990), 229-253.
- C. Chou, A. T. Lau and J. Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. 29 (1985), 340-350.
- M. G. Cowling and J. J. F. Fournier, Inclusions and noninclusions of spaces of convolution operators, Trans. Amer. Math. Soc. 221 (1976), 59-95.
- C. De Vito, Characterizations of those ideals in
which can be synthesized, Math. Ann. 203 (1973), 171-173. - V. G. Drinfel'd, Finitely additive measures on S² and S³, invariant with respect to rotations, Functional Anal. Appl. 18 (1984), 245-246.
- J. Duncan and S. A. R. Husseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sec. A 84 (1979), 309-325.
- C. F. Dunkl and D. E. Ramirez, C*-algebras generated by Fourier-Stieltjes transformations, Trans. Amer. Math. Soc. 164 (1972), 435-441.
- C. F. Dunkl and D. E. Ramirez, Weakly almost periodic functionals on the Fourier algebra, ibid. 185 (1973), 501-514.
- P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- B. Forrest, Arens regularity and discrete groups, Pacific J. Math. 151 (1991), 217-227.
- E. E. Granirer, A characterisation of discreteness for locally compact groups in terms of the Banach algebras
, Proc. Amer. Math. Soc. 54 (1976), 189-192. - E. E. Granirer, On some spaces of linear functionals on the algebras
for locally compact groups, Colloq. Math. 52 (1987), 119-132. - E. E. Granirer, On convolution operators which are far from being convolution by a bounded measure. Expository memoir, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 187-204; corrigendum: ibid. 14 (1992), 118.
- E. E. Granirer, On convolution operators with small support which are far from being convolution by a bounded measure, Colloq. Math. 67 (1994), 33-60; erratum: ibid. 69 (1995), 155.
- E. E. Granirer, On the set of topologically invariant means on an algebra of convolution operators on
, Proc. Amer. Math. Soc. 124 (1996), 3399-3406. - F. Greenleaf, Invariant Means of Topological Groups and Their Applications, Van Nostrand Math. Stud. 16, Van Nostrand, New York, 1969.
- C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.
- C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 91-123.
- E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vols. I, II, Springer, New York, 1970.
- Y. Katznelson, An Introduction to Harmonic Analysis, Dover Publ., New York, 1976.
- A. T. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39-59.
- A. T. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, ibid. 267 (1981), 53-63.
- A. T. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), 1-30.
- A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence, R.I., 1988.
- J. P. Pier, Amenable Locally Compact Groups, Wiley, New York, 1984.
- P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291.
- A. Ülger, Some results about the spectrum of commutative Banach algebras under the weak topology and applications, Monatsh. Math. 121 (1996), 353-379.
- G. Zeller-Meier, Représentations fidèles des produits croisés, C. R. Acad. Sci. Paris Sér. A 264 (1967), 679-682.