ArticleOriginal scientific text

Title

Spectrum of commutative Banach algebras and isomorphism of C*-algebras related to locally compact groups

Authors 1

Affiliations

  1. Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Abstract

Let A be a semisimple commutative regular tauberian Banach algebra with spectrum ΣA. In this paper, we study the norm spectra of elements of span¯ΣA and present some applications. In particular, we characterize the discreteness of ΣA in terms of norm spectra. The algebra A is said to have property (S) if, for all φspan¯ΣA {0}, φ has a nonempty norm spectrum. For a locally compact group G, let 2d(Ĝ) denote the C*-algebra generated by left translation operators on L2(G) and Gd denote the discrete group G. We prove that the Fourier algebra A(G) has property (S) iff the canonical trace on 2d(Ĝ) is faithful iff 2d(Ĝ)2d(Ĝd). This provides an answer to the isomorphism problem of the two C*-algebras and generalizes the so-called "uniqueness theorem" on the group algebra L1(G) of a locally compact abelian group G. We also prove that Gd is amenable iff G is amenable and the Figà-Talamanca-Herz algebra Ap(G) has property (S) for all p.

Keywords

spectrum, synthesizable ideal, locally compact group, Fourier algebra, Figà-Talamanca-Herz algebra, amenability

Bibliography

  1. E. Bédos, On the C*-algebra generated by the left translation of a locally compact group, Proc. Amer. Math. Soc. 120 (1994), 603-608.
  2. M. Bekka, E. Kaniuth, A. T. Lau and G. Schlichting, On C*-algebras associated with locally compact groups, ibid. 124 (1996), 3151-3158.
  3. M. Bekka, A. T. Lau and G. Schlichting, On invariant subalgebras of the Fourier-Stieljes algebra of a locally compact group, Math. Ann. 294 (1992), 513-522.
  4. M. Bekka and A. Valette, On duals of Lie groups made discrete, J. Reine Angew. Math. 439 (1993), 1-10.
  5. J. J. Benedetto, Spectral Synthesis, Academic Press, New York, 1975.
  6. C. Chou, Almost periodic operators in VN(G), Trans. Amer. Math. Soc. 317 (1990), 229-253.
  7. C. Chou, A. T. Lau and J. Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. 29 (1985), 340-350.
  8. M. G. Cowling and J. J. F. Fournier, Inclusions and noninclusions of spaces of convolution operators, Trans. Amer. Math. Soc. 221 (1976), 59-95.
  9. C. De Vito, Characterizations of those ideals in L1() which can be synthesized, Math. Ann. 203 (1973), 171-173.
  10. V. G. Drinfel'd, Finitely additive measures on S² and S³, invariant with respect to rotations, Functional Anal. Appl. 18 (1984), 245-246.
  11. J. Duncan and S. A. R. Husseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sec. A 84 (1979), 309-325.
  12. C. F. Dunkl and D. E. Ramirez, C*-algebras generated by Fourier-Stieltjes transformations, Trans. Amer. Math. Soc. 164 (1972), 435-441.
  13. C. F. Dunkl and D. E. Ramirez, Weakly almost periodic functionals on the Fourier algebra, ibid. 185 (1973), 501-514.
  14. P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
  15. B. Forrest, Arens regularity and discrete groups, Pacific J. Math. 151 (1991), 217-227.
  16. E. E. Granirer, A characterisation of discreteness for locally compact groups in terms of the Banach algebras Ap(G), Proc. Amer. Math. Soc. 54 (1976), 189-192.
  17. E. E. Granirer, On some spaces of linear functionals on the algebras Ap(G) for locally compact groups, Colloq. Math. 52 (1987), 119-132.
  18. E. E. Granirer, On convolution operators which are far from being convolution by a bounded measure. Expository memoir, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 187-204; corrigendum: ibid. 14 (1992), 118.
  19. E. E. Granirer, On convolution operators with small support which are far from being convolution by a bounded measure, Colloq. Math. 67 (1994), 33-60; erratum: ibid. 69 (1995), 155.
  20. E. E. Granirer, On the set of topologically invariant means on an algebra of convolution operators on Lp(G), Proc. Amer. Math. Soc. 124 (1996), 3399-3406.
  21. F. Greenleaf, Invariant Means of Topological Groups and Their Applications, Van Nostrand Math. Stud. 16, Van Nostrand, New York, 1969.
  22. C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.
  23. C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 91-123.
  24. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vols. I, II, Springer, New York, 1970.
  25. Y. Katznelson, An Introduction to Harmonic Analysis, Dover Publ., New York, 1976.
  26. A. T. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39-59.
  27. A. T. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, ibid. 267 (1981), 53-63.
  28. A. T. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), 1-30.
  29. A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence, R.I., 1988.
  30. J. P. Pier, Amenable Locally Compact Groups, Wiley, New York, 1984.
  31. P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291.
  32. A. Ülger, Some results about the spectrum of commutative Banach algebras under the weak topology and applications, Monatsh. Math. 121 (1996), 353-379.
  33. G. Zeller-Meier, Représentations fidèles des produits croisés, C. R. Acad. Sci. Paris Sér. A 264 (1967), 679-682.
Pages:
207-223
Main language of publication
English
Received
1997-01-20
Accepted
1997-10-27
Published
1998
Exact and natural sciences