ArticleOriginal scientific text
Title
Isometric embedding into spaces of continuous functions
Authors 1
Affiliations
- Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, c/Tarfia, s/n, 41012 Sevilla, Spain
Abstract
We prove that some Banach spaces X have the property that every Banach space that can be isometrically embedded in X can be isometrically and linearly embedded in X. We do not know if this is a general property of Banach spaces. As a consequence we characterize for which ordinal numbers α, β there exists an isometric embedding between and .
Keywords
metric space, Banach space, metric linear dimension
Bibliography
- S. Banach, Théorie des opérations linéaires, Chelsea, New York, 1933.
- C. Bessaga and A. Pełczyński, Spaces of continuous functions (IV), Studia Math. 19 (1960), 53-62.
- R. Engelking, General Topology, PWN, Warszawa, 1977.
- T. Figiel, On non-linear isometric embeddings of normed linear spaces, Bull. Acad. Polon. Sci. 16 (1968), 185-188.
- S. Mazur et S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
- S. Rolewicz, Metric Linear Spaces, Reidel and PWN, Dordrecht and Warszawa, 1985.
- Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
- W. Sierpiński, Cardinal and Ordinal Numbers, PWN, Warszawa, 1958.