ArticleOriginal scientific text

Title

Isometric embedding into spaces of continuous functions

Authors 1

Affiliations

  1. Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, c/Tarfia, s/n, 41012 Sevilla, Spain

Abstract

We prove that some Banach spaces X have the property that every Banach space that can be isometrically embedded in X can be isometrically and linearly embedded in X. We do not know if this is a general property of Banach spaces. As a consequence we characterize for which ordinal numbers α, β there exists an isometric embedding between C0(α+1) and C0(β+1).

Keywords

metric space, Banach space, metric linear dimension

Bibliography

  1. S. Banach, Théorie des opérations linéaires, Chelsea, New York, 1933.
  2. C. Bessaga and A. Pełczyński, Spaces of continuous functions (IV), Studia Math. 19 (1960), 53-62.
  3. R. Engelking, General Topology, PWN, Warszawa, 1977.
  4. T. Figiel, On non-linear isometric embeddings of normed linear spaces, Bull. Acad. Polon. Sci. 16 (1968), 185-188.
  5. S. Mazur et S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
  6. S. Rolewicz, Metric Linear Spaces, Reidel and PWN, Dordrecht and Warszawa, 1985.
  7. Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
  8. W. Sierpiński, Cardinal and Ordinal Numbers, PWN, Warszawa, 1958.
Pages:
197-205
Main language of publication
English
Received
1996-11-12
Accepted
1997-12-31
Published
1998
Exact and natural sciences