ArticleOriginal scientific text
Title
The Grothendieck-Pietsch domination principle for nonlinear summing integral operators
Authors 1
Affiliations
- Department of Computer Science, The University of Queensland, Brisbane, Queensland 4072, Australia
Abstract
We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.
Bibliography
- J. Batt, Nonlinear integral operators on C(S,E), Studia Math. 48 (1973), 147-181.
- J. Batt and J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal. 4 (1969), 215-239.
- F. Bombal, Operators on spaces of vector valued continuous functions, Extracta Math. 1 (1986), 103-114.
- F. Bombal and P. Cembranos, Characterizations of some classes of operators on spaces of vector valued continuous functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137-146.
- J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
- J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
- N. Dinculeanu, Vector Measures, Pergamon Press, Oxford, 1967.
- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
- K. Lermer, Characterizations of weakly compact nonlinear integral operators on C(S)-spaces, Stud. Cerc. Mat. 48 (1996), 365-378.
- A. Pietsch, Operator Ideals, North-Holland, 1980.