ArticleOriginal scientific text

Title

The Grothendieck-Pietsch domination principle for nonlinear summing integral operators

Authors 1

Affiliations

  1. Department of Computer Science, The University of Queensland, Brisbane, Queensland 4072, Australia

Abstract

We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.

Bibliography

  1. J. Batt, Nonlinear integral operators on C(S,E), Studia Math. 48 (1973), 147-181.
  2. J. Batt and J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal. 4 (1969), 215-239.
  3. F. Bombal, Operators on spaces of vector valued continuous functions, Extracta Math. 1 (1986), 103-114.
  4. F. Bombal and P. Cembranos, Characterizations of some classes of operators on spaces of vector valued continuous functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137-146.
  5. J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
  6. J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
  7. N. Dinculeanu, Vector Measures, Pergamon Press, Oxford, 1967.
  8. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  9. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
  10. K. Lermer, Characterizations of weakly compact nonlinear integral operators on C(S)-spaces, Stud. Cerc. Mat. 48 (1996), 365-378.
  11. A. Pietsch, Operator Ideals, North-Holland, 1980.
Pages:
97-112
Main language of publication
English
Received
1995-10-30
Accepted
1997-12-01
Published
1998
Exact and natural sciences