ArticleOriginal scientific text

Title

An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property

Authors 1, 1

Affiliations

  1. Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Abstract

C.-M. Cho and W. B. Johnson showed that if a subspace E of p, 1 < p < ∞, has the compact approximation property, then K(E) is an M-ideal in ℒ(E). We prove that for every r,s ∈ ]0,1] with r2+s2<1, the James space can be provided with an equivalent norm such that an arbitrary subspace E has the metric compact approximation property iff there is a norm one projection P on ℒ(E)* with Ker P = K(E)^{⊥} satisfying ∥⨍∥ ≥ r∥Pf∥ + s∥φ - Pf∥ ∀⨍ ∈ ℒ(E)*. A similar result is proved for subspaces of upper p-spaces (e.g. Lorentz sequence spaces d(w, p) and certain renormings of Lp).

Bibliography

  1. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. Parts I and II, Ann. of Math. 96 (1972), 98-173.
  2. J. C. Cabello and E. Nieto, On properties of M-ideals, Rocky Mountain J. Math., to appear.
  3. J. C. Cabello, E. Nieto and E. Oja, On ideals of compact operators satisfying the M(r,s)-inequality, J. Math. Anal. Appl., to appear.
  4. C.-M. Cho and W. B. Johnson, A characterization of subspaces X of lp for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470.
  5. D. Van Dulst, Reflexive and Superreflexive Banach spaces, Math. Centre Tracts 102, Amsterdam, 1978.
  6. M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49.
  7. G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59.
  8. G. Godefroy and D. Saphar, Duality in spaces of operators and smooth norms in Banach spaces, Illinois J. Math. 32 (1988), 672-695.
  9. P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264.
  10. P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
  11. J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934.
  12. J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311.
  13. N. J. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169.
  14. Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249-263.
  15. E. Oja, On the uniqueness of the norm-preserving extension of a linear functional in the Hahn-Banach theorem, Izv. Akad. Nauk Est. SSR Ser. Fiz. Mat. 33 (1984), 424-438 (in Russian).
  16. E. Oja, Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246 (in Russian); English transl.: Math. Notes 43 (1988), 134-139.
  17. E. Oja and D. Werner, Remarks on M-ideals of compact operators on XpX, Math. Nachr. 152 (1991), 101-111.
  18. R. Payá and W. Werner, An approximation property related to M-ideals of compact operators, Proc. Amer. Math. Soc. 111 (1991), 993-1001.
  19. R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
Pages:
185-196
Main language of publication
English
Received
1997-08-04
Accepted
1997-10-04
Published
1998
Exact and natural sciences