ArticleOriginal scientific text

Title

Finite rank elements in semisimple Banach algebras

Authors 1, 2

Affiliations

  1. University of Maribor, PF, Koroška 160, 2000 Maribor, Slovenia
  2. University of Maribor, SF, Smetanova 17, 2000 Maribor, Slovenia

Abstract

Let A be a semisimple Banach algebra. We define the rank of a nonzero element a in the socle of A to be the minimum of the number of minimal left ideals whose sum contains a. Several characterizations of rank are proved.

Bibliography

  1. J. C. Alexander, Compact Banach algebras, Proc. London Math. Soc. 18 (1968), 1-18.
  2. B. Aupetit and T. Mouton, Spectrum-preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100.
  3. B. Aupetit and T. Mouton, Trace and determinant in Banach algebras, ibid. 121 (1996), 115-136.
  4. M. Brešar and P. Šemrl, Derivations mapping into the socle, Math. Proc. Cambridge Philos. Soc. 120 (1996), 339-346.
  5. J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Vol. 1, Academic Press, Boston, 1988.
  6. A. A. Jafarian and A. R. Sourour, Spectrum preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.
  7. B. V. Limaye, A spectral characterization of operators having rank k, Linear Algebra Appl. 143 (1991), 57-66.
  8. T. Mouton and H. Raubenheimer, On rank one and finite elements of Banach algebras, Studia Math. 104 (1993), 211-219.
  9. P. Nylen and L. Rodman, Approximation numbers and Yamamoto's theorem in Banach algebras, Integral Equations Operator Theory 13 (1990), 728-749.
  10. C. E. Rickart, General Theory of Banach Algebras, The University Series in Higher Mathematics, D. van Nostrand, 1960.
Pages:
287-298
Main language of publication
English
Received
1997-07-15
Accepted
1997-10-29
Published
1998
Exact and natural sciences