ArticleOriginal scientific text

Title

Factorization of operators on C*-algebras

Authors 1

Affiliations

  1. Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056, U.S.A.

Abstract

Let A be a C*-algebra. We prove that every absolutely summing operator from A into 2 factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and TΠ1(A,2) with π1(T)1, then for every ε >0, the ε-capacity of the image of the unit ball of A under T does not exceed N(ε). This answers positively a question raised by Pełczyński.

Keywords

C*-algebras, compact operators

Bibliography

  1. C. H. Chu and B. Iochum, Complementation of Jordan triples in von Neumann algebras, Proc. Amer. Math. Soc. 108 (1990), 19-24.
  2. J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
  3. J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995.
  4. Y. Gordon and D. R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27-48.
  5. S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72-104.
  6. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. II, Pure Appl. Math. 100, Academic Press, Orlando, Fla., 1986.
  7. A. N. Kolmogorov and V. M. Tikhomirov, ε-Entropy and ε-capacity of sets in function spaces, Uspekhi Mat. Nauk 86 (1959), 3-86 (in Russian); English transl.: Amer. Math. Soc. Trans. Ser. 2 17 (1961), 277-364.
  8. S. Kwapień, Some remarks on (p,q)-summing operators on p-spaces, Studia Math. 29 (1968), 327-337.
  9. B. S. Mitjagin [B. S. Mityagin] and A. Pełczyński, Nuclear operators and approximative dimension, in: Proc. ICM (Moscow, 1966), Mir, Moscow, 1968, 366-372.
  10. A. Pełczyński, Compactness of absolutely summing operators, in: Linear and Complex Analysis Problem Book 3, Part I, V. P. Havin and N. K. Nikolski (eds.), Lecture Notes in Math. 1573, Springer, 1994, 19-20.
  11. A. Pełczyński and C. Schütt, Factoring the natural injection ιn:LnLn1 through finite dimensional Banach spaces and geometry of finite dimensional unitary ideals, in: Mathematical Analysis and Applications, Part B, L. Nachbin (ed.), Adv. Math. Suppl. Stud. 7B, Academic Press, 1981, 653-683.
  12. A. Pietsch, Operator Ideals, North-Holland Math. Library 20, North-Holland, 1980.
  13. G. Pisier, Grothendieck's theorem for non-commutative C*-algebras with appendix on Grothendieck's constants, J. Funct. Anal. 29 (1978), 397-415.
  14. G. Pisier, Factorization of operators through Lp or L1 and non-commutative generalizations, Math. Ann. 276 (1986), 105-136.
  15. N. Randrianantoanina, Absolutely summing operators on non-commutative C*-algebras and applications, Houston J. Math., to appear.
  16. A. I. Singh and N. Mittal, Complete finite representability in C*-algebras, Yokohama Math. J. 38 (1991), 83-94.
  17. M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
  18. N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs Surveys Pure Appl. Math. 38, Longman Sci. Tech., 1989.
  19. H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras, North-Holland Math. Stud. 104, North-Holland, Amsterdam, 1985.
  20. P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, 1991.
Pages:
273-285
Main language of publication
English
Received
1997-02-17
Accepted
1997-06-24
Published
1998
Exact and natural sciences