Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 128 | 3 | 219-241
Tytuł artykułu

Maximal functions and smoothness spaces in $L_{p}(ℝ^{d})

Treść / Zawartość
Warianty tytułu
Języki publikacji
We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces $C^α_p(ℝ^d)$, 0 < p≤∞, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the $C^α_p(ℝ^d)$ spaces in terms of the coefficients of wavelet decompositions.
  • Department of Mathematics and Statistics, University of Cyprus, P.O. Box 537, Nicosia, Cyprus
  • [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
  • [CS] A. Calderón, and R. Scott, Sobolev type inequalities for p>0, Studia Math. 62 (1978), 75-92.
  • [CDF] A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560.
  • [D] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
  • [DP] R. DeVore and V. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414.
  • [DS] R. DeVore and R. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 293 (1984).
  • [DY] R. DeVore and X. Yu, Degree of adaptive approximation, Math. Comp. 55 (1990), 625-635.
  • [K] G. Kyriazis, Approximation of distribution spaces by means of kernel operators, J. Fourier Anal. Appl. 2 (1996), 261-286.
  • [LM] P. G. Lemarié and G. Malgouyres, Support des fonctions de base dans une analyse multi-résolution, C. R. Acad. Sci. Paris 313 (1991), 377-380.
  • [M] Y. Meyer, Ondelettes et Opérateurs I: Ondelettes, Hermann 1990.
  • [T] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.