ArticleOriginal scientific text
Title
Maximal functions and smoothness spaces in !$!L_{p}(ℝ^{d})
Authors 1
Affiliations
- Department of Mathematics and Statistics, University of Cyprus, P.O. Box 537, Nicosia, Cyprus
Abstract
We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces , 0 < p≤∞, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the spaces in terms of the coefficients of wavelet decompositions.
Keywords
maximal functions, approximation by operators, wavelets, smoothness spaces
Bibliography
- [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
- [CS] A. Calderón, and R. Scott, Sobolev type inequalities for p>0, Studia Math. 62 (1978), 75-92.
- [CDF] A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560.
- [D] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
- [DP] R. DeVore and V. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414.
- [DS] R. DeVore and R. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 293 (1984).
- [DY] R. DeVore and X. Yu, Degree of adaptive approximation, Math. Comp. 55 (1990), 625-635.
- [K] G. Kyriazis, Approximation of distribution spaces by means of kernel operators, J. Fourier Anal. Appl. 2 (1996), 261-286.
- [LM] P. G. Lemarié and G. Malgouyres, Support des fonctions de base dans une analyse multi-résolution, C. R. Acad. Sci. Paris 313 (1991), 377-380.
- [M] Y. Meyer, Ondelettes et Opérateurs I: Ondelettes, Hermann 1990.
- [T] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.