ArticleOriginal scientific text

Title

Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in n

Authors 1

Affiliations

  1. Dipartimento di Matematica, Università di Parma, Via D'Azeglio 85/A, 43100 Parma, Italy

Abstract

We study existence, uniqueness, and smoothing properties of the solutions to a class of linear second order elliptic and parabolic differential equations with unbounded coefficients in n. The main results are global Schauder estimates, which hold in spite of the unboundedness of the coefficients.

Bibliography

  1. D. G. Aronson and P. Besala, Parabolic equations with unbounded coefficients, J. Differential Equations 3 (1967), 1-14.
  2. J. S. Baras, G. O. Blankenship and W. E. Hopkins, Existence, uniqueness and asymptotic behavior of solutions to a class of Zakai equations with unbounded coefficients, IEEE Trans. Automat. Control 28 (1983), 203-214.
  3. A. Bensoussan and J.-L. Lions, Applications of Variational Inequalities in Stochastic Control, North-Holland, Amsterdam, 1982.
  4. P. Besala, On the existence of a fundamental solution for a parabolic differential equation with unbounded coefficients, Ann. Polon. Math. 29 (1975), 403-409.
  5. W. Bodanko, Sur le problème de Cauchy et les problèmes de Fourier pour les équations paraboliques dans un domaine non borné, ibid. 28 (1966), 79-94.
  6. P. Cannarsa and V. Vespri, Generation of analytic semigroups by elliptic operators with unbounded coefficients, SIAM J. Math. Anal. 18 (1987), 857-872.
  7. S. Cerrai, Elliptic and parabolic equations in n with coefficients having polynomial growth, Comm. Partial Differential Equations 21 (1996), 281-317.
  8. S. Cerrai, Some results for second order elliptic operators having unbounded coefficients, preprint, Scuola Norm. Sup. Pisa, 1996.
  9. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1990.
  10. M. H. Davis and S. I. Markus, An Introduction to Nonlinear Filtering, NATO Adv. Study Inst. Ser., Reidel, Dordrecht, 1980.
  11. G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114.
  12. W. H. Fleming and S. K. Mitter, Optimal control and nonlinear filtering for nondegenerate diffusion processes, Stochastics 8 (1982), 63-77.
  13. S. Ito, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math. 27 (1957), 5-102.
  14. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
  15. A. Lunardi, An interpolation method to characterize domains of generators of semigroups, Semigroup Forum 53 (1996), 321-329.
  16. A. Lunardi, On the Ornstein-Uhlenbeck operator in L2 spaces with respect to invariant measures, Trans. Amer. Math. Soc. 349 (1997), 155-169.
  17. A. Lunardi and V. Vespri, Optimal L and Schauder estimates for elliptic and parabolic operators with unbounded coefficients, in: Reaction-Diffusion Systems, Proc., G. Caristi and E. Mitidieri (eds.), Lecture Notes in Pure and Appl. Math. 194, M. Dekker, 1997, 217-239.
  18. A. Lunardi and V. Vespri, Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in Lp(n), Rend. Mat., volume in honour of P. Grisvard, to appear.
  19. S. J. Sheu, Solution of certain parabolic equations with unbounded coefficients and its application to nonlinear filtering, Stochastics 10 (1983), 31-46.
  20. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
Pages:
171-198
Main language of publication
English
Received
1997-05-26
Published
1998
Exact and natural sciences