ArticleOriginal scientific text

Title

Commutators of quasinilpotents and invariant subspaces

Authors 1, 1

Affiliations

  1. Department of Mathematics, University of Athens, 15784 Athens, Greece

Abstract

It is proved that the set Q of quasinilpotent elements in a Banach algebra is an ideal, i.e. equal to the Jacobson radical, if (and only if) the condition [Q,Q] ⊆ Q (or a similar condition concerning anticommutators) holds. In fact, if the inner derivation defined by a quasinilpotent element p maps Q into itself then p ∈ Rad A. Higher commutator conditions of quasinilpotents are also studied. It is shown that if a Banach algebra satisfies such a condition, then every quasinilpotent element has some fixed power in the Jacobson radical. These results are applied to topologically transitive representations. As a consequence, it is proved that a closed algebra of polynomially compact operators satisfying a higher commutator condition must have an invariant nest of closed subspaces, with "gaps" of bounded dimension. In particular, if [Q,Q] ⊆ Q, then the algebra must be triangularizable. An example is given showing that this may fail for more general algebras.

Bibliography

  1. W. B. Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433-532.
  2. B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, 1979.
  3. B. Aupetit, A Primer on Spectral Theory, Springer, 1990.
  4. B. A. Barnes and A. Katavolos, Properties of quasinilpotents in some operator algebras, Proc. Roy. Irish Acad. Sect. A 93 (1993), 155-170.
  5. S. Grabiner, The nilpotency on Banach nil algebras, Proc. Amer. Math. Soc. 21 (1969), 510.
  6. D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, On simultaneous triangularization of collections of operators, Houston J. Math. 17 (1991), 581-602.
  7. A. Katavolos and H. Radjavi, Simultaneous triangularization of operators on a Banach space, J. London Math. Soc. (2) 41 (1990), 547-554.
  8. V. I. Lomonosov, Invariant subspaces for the family of operators which commute with a completely continuous operator, Funktsional. Anal. i Prilozhen. 7 (3) (1973) (in Russian); English transl.: Functional Anal. Appl. 7 (1973), 213-214.
  9. V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211.
  10. M. Radjabalipour, Simultaneous triangularization of algebras of polynomially compact operators, Canad. Math. Bull. 34 (1991), 260-264.
  11. H. Radjavi, The Engel-Jacobson theorem revisited, J. Algebra 111 (1987), 427-430.
  12. H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, 1973.
  13. J. R. Ringrose, Compact Nonselfadjoint Operators, Van Nostrand, New York, 1971.
  14. P. Rosenthal, Applications of Lomonosov's lemma to non-self-adjoint operator algebras, Proc. Roy. Irish Acad. Sect. A 74 (1974), 271-281.
  15. A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, 1976.
  16. Z. Słodkowski, W. Wojtyński and J. Zemánek, A note on quasinilpotent elements of a Banach algebra, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 131-134.
  17. E. Vesentini, On the subharmonicity of the spectral radius, Boll. Un. Mat. Ital. 4 (1968), 427-429.
  18. P. Vrbová, A remark concerning commutativity modulo the radical in Banach algebras, Comment. Math. Univ. Carolin. 22 (1981), 145-148.
  19. J. Zemánek, Spectral radius characterizations of commutativity in Banach algebras, Studia Math. 61 (1977), 257-268.
Pages:
159-169
Main language of publication
English
Received
1997-02-03
Accepted
1997-06-30
Published
1998
Exact and natural sciences