ArticleOriginal scientific text

Title

Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces

Authors 1, 2

Affiliations

  1. School of Mathematical Sciences, University of Sussex, Falmer, Brighton BN1 9QHi, U.K.
  2. King's College London, Strand, London WC2R 2LS, U.K.

Abstract

Let id be the natural embedding of the Sobolev space Wpl(Ω) in the Zygmund space Lq(logL)a(Ω), where Ω=(0,1)n, 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers ek(id) of this embedding and show that ek(id)k-η, where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.

Bibliography

  1. [BeS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
  2. [BiS1] M. S. Birman and M. Z. Solomyak, Piecewise polynomial approximations of functions of the class Wpα, Mat. Sb. 73 (1967), 331-355 (in Russian); English transl.: Math. USSR-Sb. (1967), 295-317.
  3. [BiS2] M. S. Birman and M. Z. Solomyak, Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, in: Adv. Soviet Math. 7, Amer. Math. Soc., 1991, 1-55.
  4. [ET] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press, Cambridge, 1996.
  5. [FJ] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
  6. [KT] A. N. Kolmogorov and V. M. Tikhomirov, ε-entropy and ε-capacity of sets in functional spaces, Uspekhi Mat. Nauk 14 (2) (1959), 3-86 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 2 17 (1961), 277-364.
  7. [L] G. G. Lorentz, The 13th problem of Hilbert, in: Mathematical Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math. 28, Amer. Math. Soc., 1976, 419-430.
  8. [N1] Yu. V. Netrusov, Embedding theorems for Lizorkin-Triebel spaces, Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 159 (1987), 103-112 (in Russian); English transl.: Soviet Math. 47 (1989), 2896-2903.
  9. [N2] Yu. V. Netrusov, The exceptional sets of functions from Besov and Lizorkin-Triebel spaces, Trudy Mat. Inst. Steklov. 187 (1989), 162-177 (in Russian); English transl.: Proc. Steklov Inst. Math. 187 (1990), 185-203.
  10. [T] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
  11. [V] A. G. Vitushkin, Estimation of the Complexity of the Tabulation Problem, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (in Russian); English transl.: Theory of the Transmission and Processing of Information, Pergamon Press, New York, 1961.
Pages:
71-102
Main language of publication
English
Received
1997-07-07
Published
1998
Exact and natural sciences