ArticleOriginal scientific text

Title

On the dependence of the orthogonal projector on deformations of the scalar product

Authors 1

Affiliations

  1. Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland

Abstract

We consider scalar products on a given Hilbert space parametrized by bounded positive and invertible operators defined on this space, and orthogonal projectors onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar products. We show that the projector is an analytic function of the scalar product, we give the explicit formula for its Taylor expansion, and we prove some algebraic formulas for projectors.

Keywords

scalar product, orthogonal projector, dependence of projectors on scalar products

Bibliography

  1. S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys Monographs 5, Amer. Math. Soc., 2nd rev. ed., 1970.
  2. S. G. Krantz, Function Theory of Several Complex Variables, Interscience-Wiley, New York, 1982.
  3. J.-P. Labrousse, The general local form of an analytic mapping into the set of idempotent elements of a Banach algebra, Proc. Amer. Math. Soc. 123 (1995), 3467-3471.
  4. A. Odzijewicz, On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577-597.
  5. A. Odzijewicz, Coherent states and geometric quantization, ibid. 150 (1992), 385-413.
  6. K. Maurin, Analysis, Part I, Elements, PWN-Reidel, Warszawa-Dordrecht, 1976.
  7. Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134.
  8. Z. Pasternak-Winiarski, On reproducing kernels for holomorphic vector bundles, in: Quantization and Infinite-Dimensional Systems, J.-P. Antoine, S. Twareque Ali, W. Lisiecki, I. M. Mladenov and A. Odzijewicz (eds.), Plenum Press, New York, 1994, 109-112.
  9. Z. Pasternak-Winiarski, Bergman spaces and kernels for holomorphic vector bundles, Demonstratio Math. 30 (1997), 199-214.
  10. J. H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford Ser. 28 (1077), 403-415.
  11. K. Yosida, Functional Analysis, Springer, Berlin, 1965.
Pages:
1-17
Main language of publication
English
Received
1996-03-06
Accepted
1997-03-06
Published
1998
Exact and natural sciences