ArticleOriginal scientific text

Title

Harmonic extensions and the Böttcher-Silbermann conjecture

Authors 1, 2

Affiliations

  1. Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837, U.S.A.
  2. Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240, U.S.A.

Abstract

We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space L(D) and discuss conditions under which the Poisson kernel is asymptotically multiplicative.

Bibliography

  1. S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), 285-309.
  2. S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, ibid. 14 (1991), 1-12.
  3. S. Axler and P. Gorkin, Divisibility in Douglas algebras, Michigan Math. J. 31 (1984), 89-94.
  4. S. Axler and P. Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), 711-723.
  5. S. Axler and D. Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127 (1998), 113-136.
  6. A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Akademie-Verlag, 1989, and Springer, 1990.
  7. A. Böttcher and B. Silbermann, Axler-Chang-Sarason-Volberg Theorems for harmonic approximation and stable convergence, in: Linear and Complex Analysis Problem Book 3, Part I, V. P. Havin and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 1573, Springer, 1994, 340-341.
  8. P. Budde, Support sets and Gleason parts of M(H), thesis, Univ. of California, Berkeley, 1982.
  9. S.-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89.
  10. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
  11. R. G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, Regional Conf. Ser. in Math. 15, Amer. Math. Soc., 1972.
  12. T. W. Gamelin, Uniform Algebras, 2nd ed., Chelsea, 1984.
  13. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  14. P. Gorkin, Decompositions of the maximal ideal space of L, doctoral dissertation, Michigan State Univ., 1982.
  15. P. Gorkin, Hankel type operators, Bourgain algebras, and uniform algebras, preprint.
  16. P. Gorkin and K. Izuchi, Some counterexamples in subalgebras of L, Indiana Univ. Math. J. 40 (1991), 1301-1313.
  17. P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization in Douglas algebras, Michigan Math. J. 38 (1991), 147-160.
  18. P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators, preprint.
  19. C. Guillory and K. Izuchi, Interpolating Blaschke products of type G, Complex Variables Theory Appl. 31 (1996), 51-64.
  20. C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84 (1984), 1-7.
  21. K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317.
  22. K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111.
  23. G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman & Co. Glenview, IL, 1970.
  24. D. E. Marshall, Subalgebras of L containing H, Acta Math. 137 (1976), 91-98.
  25. R. Mortini and V. Tolokonnikov, Blaschke products of Sundberg-Wolff type, Complex Variables Theory Appl. 30 (1996), 373-384.
  26. N. K. Nikol'skiĭ, Treatise on the Shift Operator, Springer, New York, 1985.
  27. D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.
  28. D. Sarason, Algebras between L and H, in: Spaces of Analytic Functions, Lecture Notes in Math. 512, Springer, 1976, 117-129.
  29. C. Sundberg and T. Wolff, Interpolating sequences for QAB, Trans. Amer. Math. Soc. 276 (1983), 551-581.
  30. A. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang, and D. Sarason, J. Operator Theory 8 (1982), 209-218.
  31. R. Younis and D. Zheng, Algebras generated by bounded analytic and harmonic functions and applications, preprint.
  32. D. Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138 (1996), 477-501.
Pages:
201-222
Main language of publication
English
Received
1996-05-20
Accepted
1997-05-15
Published
1998
Exact and natural sciences