ArticleOriginal scientific text
Title
Harmonic extensions and the Böttcher-Silbermann conjecture
Authors 1, 2
Affiliations
- Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837, U.S.A.
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240, U.S.A.
Abstract
We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space and discuss conditions under which the Poisson kernel is asymptotically multiplicative.
Bibliography
- S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), 285-309.
- S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, ibid. 14 (1991), 1-12.
- S. Axler and P. Gorkin, Divisibility in Douglas algebras, Michigan Math. J. 31 (1984), 89-94.
- S. Axler and P. Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), 711-723.
- S. Axler and D. Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127 (1998), 113-136.
- A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Akademie-Verlag, 1989, and Springer, 1990.
- A. Böttcher and B. Silbermann, Axler-Chang-Sarason-Volberg Theorems for harmonic approximation and stable convergence, in: Linear and Complex Analysis Problem Book 3, Part I, V. P. Havin and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 1573, Springer, 1994, 340-341.
- P. Budde, Support sets and Gleason parts of
, thesis, Univ. of California, Berkeley, 1982. - S.-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89.
- R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- R. G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, Regional Conf. Ser. in Math. 15, Amer. Math. Soc., 1972.
- T. W. Gamelin, Uniform Algebras, 2nd ed., Chelsea, 1984.
- J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- P. Gorkin, Decompositions of the maximal ideal space of
, doctoral dissertation, Michigan State Univ., 1982. - P. Gorkin, Hankel type operators, Bourgain algebras, and uniform algebras, preprint.
- P. Gorkin and K. Izuchi, Some counterexamples in subalgebras of
, Indiana Univ. Math. J. 40 (1991), 1301-1313. - P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization in Douglas algebras, Michigan Math. J. 38 (1991), 147-160.
- P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators, preprint.
- C. Guillory and K. Izuchi, Interpolating Blaschke products of type G, Complex Variables Theory Appl. 31 (1996), 51-64.
- C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84 (1984), 1-7.
- K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317.
- K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111.
- G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman & Co. Glenview, IL, 1970.
- D. E. Marshall, Subalgebras of
containing , Acta Math. 137 (1976), 91-98. - R. Mortini and V. Tolokonnikov, Blaschke products of Sundberg-Wolff type, Complex Variables Theory Appl. 30 (1996), 373-384.
- N. K. Nikol'skiĭ, Treatise on the Shift Operator, Springer, New York, 1985.
- D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.
- D. Sarason, Algebras between
and , in: Spaces of Analytic Functions, Lecture Notes in Math. 512, Springer, 1976, 117-129. - C. Sundberg and T. Wolff, Interpolating sequences for
, Trans. Amer. Math. Soc. 276 (1983), 551-581. - A. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang, and D. Sarason, J. Operator Theory 8 (1982), 209-218.
- R. Younis and D. Zheng, Algebras generated by bounded analytic and harmonic functions and applications, preprint.
- D. Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138 (1996), 477-501.