ArticleOriginal scientific text
Title
The Berezin transform on the Toeplitz algebra
Authors 1, 2
Affiliations
- Department of Mathematics, San Francisco State University, San Francisco, California 94132, U.S.A.
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240, U.S.A.
Abstract
This paper studies the boundary behavior of the Berezin transform on the C*-algebra generated by the analytic Toeplitz operators on the Bergman space.
Bibliography
- P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), 380-397.
- S. Axler, Bergman spaces and their operators, in: Surveys of Some Recent Results in Operator Theory, Vol. 1, J. B. Conway and B. B. Morrel (eds.), Pitman Res. Notes Math., 1988, 1-50.
- S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), 1-12.
- S. Axler and P. Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), 711-723.
- S. Axler and A. Shields, Extensions of analytic and harmonic functions, Pacific J. Math. 145 (1990), 1-15.
- S. Axler and D. C. Zheng, Compact operators via the Berezin transform, preprint.
- M. Engliš, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), 233-254.
- J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.
- K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111.
- S. Kiliç, The Berezin symbol and multipliers of functional Hilbert spaces, Proc. Amer. Math. Soc. 123 (1995), 3687-3691.
- G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611.
- K. Stroethoff, Compact Toeplitz operators on Bergman spaces, preprint.
- C. Sundberg, Exact sequences for generalized Toeplitz operators, Proc. Amer. Math. Soc. 101 (1987), 634-636.
- D. C. Zheng, Hankel operators and Toeplitz operators on the Bergman space, J. Funct. Anal. 83 (1989), 98-120.