ArticleOriginal scientific text

Title

On the Djrbashian kernel of a Siegel domain

Authors 1, 1

Affiliations

  1. Dipartimento di Matematica, Università della Basilicata, Via N. Sauro 85, 85100 Potenza, Italy

Abstract

We establish an inversion formula for the M. M. Djrbashian & A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain Ωn={ζn:ϱ(ζ)>0}, ϱ(ζ)=Im(ζ1)-|ζ|2. We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the ϱα-Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of Ωn. We build an anti-holomorphic embedding of Ωn in the complex projective Hilbert space (H2_α(Ωn)) and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes. The Genchev transform (cf. [9]) is shown to be well defined on L2(Ω,ϱα), for any strip Ω ⊂ ℂ, and applied in a problem of approximation by holomorphic functions. Building on work by T. Mazur (cf. [15]) we prove the existence of a complete orthonormal system in H2_α(Ωn) consisting of eigenfunctions of a certain explicitly defined operator Va, aBn.

Keywords

γ-Bergman kernel, reproducing kernel Hilbert space, Djrbashian kernel, transition probability amplitude, Genchev transform

Bibliography

  1. N. Aronszajn, La théorie des noyaux reproduisants et ses applications, Proc. Cambridge Philos. Soc. 39 (1943), 118-153.
  2. S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. I, J. Reine Angew. Math. 169 (1933), 1-42.
  3. S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys 5, Amer. Math. Soc., 1950.
  4. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque 77 (1980), 11-66.
  5. M. M. Djrbashian, Interpolation and spectral expansions associated with differential operators of fractional order, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 19 (1984), 81-181 (in Russian).
  6. M. M. Djrbashian and A. H. Karapetyan, Integral representations for some classes of functions holomorphic in a Siegel domain, J. Math. Anal. Appl. 179 (1993), 91-109.
  7. S. Dragomir, On weighted Bergman kernels of bounded domains, Studia Math., 108 (1994), 149-157.
  8. K. Gawędzki, Fourier-like kernels in geometric quantization, Dissertationes Math. 125 (1976).
  9. T. Genchev, Paley-Wiener type theorems for functions holomorphic in a half-plane, C. R. Acad. Bulgare Sci. 37 (1983), 141-144.
  10. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
  11. P. F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded pseudoconvex sets, Indiana Univ. Math. J. (2) 27 (1978), 275-282.
  12. S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267-290.
  13. S. G. Krantz, Function Theory of Several Complex Variables, Pure Appl. Math., Wiley, New York, 1982.
  14. A. Lichnerowicz, Variétés complexes et tenseur de Bergman, Ann. Inst. Fourier (Grenoble) 15 (1965), 345-408.
  15. T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (1989), 303-310.
  16. T. Mazur, On the complex manifolds of Bergman type, in: Classical Analysis, Proc. 6th Symposium (23-29 September 1991, Poland), World Scientific, 1993, 132-138.
  17. T. Mazur and M. Skwarczyński, Spectral properties of holomorphic automorphisms with fixed point, Glasgow Math. J. 28 (1986), 25-30.
  18. A. Odzijewicz, On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577-597.
  19. Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134.
  20. Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. Math. Sci. 15 (1992), 1-14.
  21. W. Rudin, Function Theory in the Unit Ball of n, Springer, New York, 1980.
  22. S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 89 (1983), 74-78.
  23. S. Saitoh, One approach to some general integral transforms and its applications, Integral Transforms and Special Functions 3 (1995), 49-84.
  24. M. Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. 173 (1980).
  25. M. Skwarczyński, Alternating projections between a strip and a half-plane, Math. Proc. Cambridge Philos. Soc. 102 (1987), 121-129.
Pages:
47-63
Main language of publication
English
Received
1996-07-29
Accepted
1997-05-19
Published
1998
Exact and natural sciences