ArticleOriginal scientific text
Title
Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis
Authors 1, 2
Affiliations
- Fachbereich Physikalische Technik, Märkische Fachhochschule Iserlohn, Frauenstuhlweg 31, D-58644 Iserlohn, Germany
- Fachbereich Mathematik, Bergische Universität-GH Wuppertal, Gauss-str. 20, D-42097 Wuppertal, Germany
Abstract
The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.
Bibliography
- C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318.
- P. B. Djakov and E. Dubinsky, Complemented block subspaces of Köthe spaces, Serdica 14 (1988), 278-282.
- P. B. Djakov and B. S. Mityagin, Modified construction of a nuclear Fréchet space without basis, J. Funct. Anal. 23 (1976), 415-423.
- E. Dubinsky, Subspaces without basis in nuclear Fréchet spaces, J. Funct. Anal. 26 (1977), 121-130.
- E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin, 1979.
- E. Dubinsky and B. S. Mityagin, Quotient spaces without basis in nuclear Fréchet spaces, Canad. J. Math. 30 (1978), 1296-1305.
- G. Köthe, Topologische lineare Räume, Springer, 1960.
- J. Krone, On Pełczyński's problem, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 297-304.
- R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992.
- A. Pełczyński, Problem 37, Studia Math. 38 (1970), 476.
- A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. 66, Springer, 1972.
- M. J. Wagner, Some new methods in the structure theory of nuclear Fréchet spaces, in: Advances in the Theory of Fréchet spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 333-354.