ArticleOriginal scientific text

Title

On non-primary Fréchet Schwartz spaces

Authors 1

Affiliations

  1. Departamento de Matemáticas, E.T.S.I.A.M., Universidad de Córdoba, 14004 Córdoba, Spain

Abstract

Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic functions of bounded type b(U), where U is a Banach space or a bounded absolutely convex open set in a Banach space.

Keywords

Fréchet spaces, primary spaces, Schwartz spaces, unconditional decompositions, spaces of Moscatelli type, holomorphic functions of bounded type

Bibliography

  1. A. Albanese, Primary products of Banach spaces, Arch. Math. (Basel) 66 (1996), 397-405.
  2. A. Albanese, Montel subspaces in Fréchet spaces of Moscatelli type, Glasgow Math. J., to appear.
  3. A. Albanese and V. B. Moscatelli, The spaces (p)q(q), 1 ≤ p < q ≤ ∞ are primary, preprint.
  4. A. Albanese and V. B. Moscatelli, Complemented subspaces of sums and products of copies of L1[0,1], Rev. Mat. Univ. Complut. Madrid 9 (1996), 275-287.
  5. A. Benndorf, On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces, Studia Math. 75 (1983), 103-119.
  6. C. Bessaga, Geometrical methods of the theory of Fréchet spaces, in: Functional Analysis and its Applications, H. Hogbe-Nlend (ed.), World Sci., Singapore, 1988, 1-34.
  7. K. D. Bierstedt, R. G. Meise and N. H. Summers, Köthe sets and Köthe sequence spaces, in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Stud. 71, North-Holland, Amsterdam, 1982, 27-91.
  8. J. Bonet and J. C. Díaz, On the weak quasinormability condition of Grothendieck, Tr. J. Math. 15 (1991), 154-164.
  9. J. Bonet and S. Dierolf, Fréchet spaces of Moscatelli type, Rev. Mat. Univ. Complut. Madrid 2 (1989), 77-92.
  10. J. M. F. Castillo, J. C. Díaz and J. Motos, On the Fréchet space Lp-, preprint.
  11. J. C. Díaz, Primariness of some universal Fréchet spaces, in: Functional Analysis, S. Dierolf, S. Dineen and P. Domański (eds.), de Gruyter, Berlin, 1996, 95-103.
  12. J. C. Díaz and M. A. Miñarro, Universal Köthe sequence spaces, Monatsh. Math., to appear.
  13. J. C. Díaz and S. Dineen, Polynomials on stable spaces, Ark. Mat., to appear.
  14. S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981.
  15. S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat. 13 (1993), 155-195.
  16. P. B. Djakov, M. Yurdakul and V. P. Zahariuta, Isomorphic classification of cartesian products of power series spaces, Michigan Math. J. 43 (1996), 221-229.
  17. P. B. Djakov and V. P. Zahariuta, On Dragilev type power Köthe spaces, Studia Math. 120 (1996), 219-234.
  18. P. Domański and A. Ortyński, Complemented subspaces of products of Banach spaces, Trans. Amer. Math. Soc. 316 (1989), 215-231.
  19. P. Galindo, M. Maestre and P. Rueda, Biduality in spaces of holomorphic functions, preprint.
  20. J. M. Isidro, Quasinormability of some spaces of holomorphic mappings, Rev. Mat. Univ. Complut. Madrid 3 (1990), 13-17.
  21. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
  22. G. Köthe, Topological Vector Spaces, I, Springer, New York, 1969.
  23. G. Metafune and V. B. Moscatelli, Complemented subspaces of sums and products of Banach spaces, Ann. Mat. Pura Appl. 153 (1988), 175-190.
  24. G. Metafune and V. B. Moscatelli, On the space p+=q>pq, Math. Nachr. 147 (1990), 47-52.
  25. A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 167-203.
  26. T. Terzioğlu and D. Vogt, A Köthe space which has a continuous norm but whose bidual does not, Arch. Math. (Basel) 54 (1990), 180-183.
  27. V. P. Zahariuta, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Rostov. Univ., 1979 (in Russian); revised English version: Turkish J. Math. 20 (1996), 237-289.
Pages:
291-307
Main language of publication
English
Received
1996-12-16
Accepted
1997-06-09
Published
1997
Exact and natural sciences