ArticleOriginal scientific text
Title
BV coboundaries over irrational rotations
Authors 1, 2
Affiliations
- Mathematical Institute, Charles University, Sokolovská 83, 186 00 Praha 8, Czech Republic
- Département de Mathématiques, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France
Abstract
For every irrational rotation we construct a coboundary which is continuous except at a single point where it has a jump, is nondecreasing, and has zero derivative almost everywhere.
Bibliography
- W. Bułatek, M. Lemańczyk and D. Rudolph, Constructions of cocycles over irrational rotations, Studia Math. 125 (1997), 1-11.
- H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 89 (1961), 573-601.
- P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mém. Soc. Math. France 47 (1991).
- A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95.
- A. Ya. Khintchine, Continued Fractions, Noordhoff, Groningen, 1963.
- L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
- M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc., to appear.
- W. Parry and S. Tuncel, Classification Problems in Ergodic Theory, London Math. Soc. Lecture Note Ser. 67, Cambridge Univ. Press, Cambridge, 1982.
- K. Schmidt, Cocycles of Ergodic Transformation Groups, Macmillan Lectures in Math. 1, Macmillan of India, 1977.
- D. Volný, Cohomology of Lipschitz and absolutely continuous functions over irrational circle rotations, submitted for publication.
- D. Volný, Constructions of smooth and analytic cocycles over irrational circle rotations, Comment. Math. Univ. Carolin. 36. (1995), 745-764.