ArticleOriginal scientific text

Title

BV coboundaries over irrational rotations

Authors 1, 2

Affiliations

  1. Mathematical Institute, Charles University, Sokolovská 83, 186 00 Praha 8, Czech Republic
  2. Département de Mathématiques, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France

Abstract

For every irrational rotation we construct a coboundary which is continuous except at a single point where it has a jump, is nondecreasing, and has zero derivative almost everywhere.

Bibliography

  1. W. Bułatek, M. Lemańczyk and D. Rudolph, Constructions of cocycles over irrational rotations, Studia Math. 125 (1997), 1-11.
  2. H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 89 (1961), 573-601.
  3. P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mém. Soc. Math. France 47 (1991).
  4. A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95.
  5. A. Ya. Khintchine, Continued Fractions, Noordhoff, Groningen, 1963.
  6. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
  7. M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc., to appear.
  8. W. Parry and S. Tuncel, Classification Problems in Ergodic Theory, London Math. Soc. Lecture Note Ser. 67, Cambridge Univ. Press, Cambridge, 1982.
  9. K. Schmidt, Cocycles of Ergodic Transformation Groups, Macmillan Lectures in Math. 1, Macmillan of India, 1977.
  10. D. Volný, Cohomology of Lipschitz and absolutely continuous functions over irrational circle rotations, submitted for publication.
  11. D. Volný, Constructions of smooth and analytic cocycles over irrational circle rotations, Comment. Math. Univ. Carolin. 36. (1995), 745-764.
Pages:
253-271
Main language of publication
English
Received
1996-09-23
Accepted
1997-01-13
Published
1997
Exact and natural sciences