ArticleOriginal scientific text

Title

Packing in Orlicz sequence spaces

Authors 1, 1, 2

Affiliations

  1. Department of Mathematics, University of California, Riverside, California 92521, U.S.A.
  2. Department of Mathematics, Suzhou University, 215006 Suzhou, P.R. China

Abstract

We show how one can, in a unified way, calculate the Kottman and the packing constants of the Orlicz sequence space defined by an N-function, equipped with either the gauge or Orlicz norms. The values of these constants for a class of reflexive Orlicz sequence spaces are found, using a quantitative index of N-functions and some interpolation theorems. The exposition is essentially selfcontained.

Keywords

packing constant, quantitative index, interpolation

Bibliography

  1. J. A. C. Burlak, R. A. Rankin and A. P. Robertson, The packing of spheres in the space p, Proc. Glasgow Math. Assoc. 4 (1958), 22-25.
  2. C. E. Cleaver, On the extension of Lipschitz-Hölder maps on Orlicz spaces, Studia Math. 42 (1972), 195-204.
  3. C. E. Cleaver, Packing spheres in Orlicz spaces, Pacific J. Math. 65 (1976), 325-335.
  4. T. Domínguez Benavides and R. J. Rodríguez, Some geometric coefficients in Orlicz sequence spaces, Nonlinear Anal. 20 (1993), 349-358.
  5. J. Elton and E. Odell, The unit ball of every infinite dimensional normed linear space contains a (1+ε)-separated sequence, Colloq. Math. 44 (1981), 105-109.
  6. H. Hudzik, Every nonreflexive Banach lattice has the packing constant equal to 1/2, Collect. Math. 44 (1993), 131-135.
  7. C. A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576.
  8. M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
  9. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I and II, Springer, Berlin, 1977 and 1979.
  10. W. Orlicz, Linear Functional Analysis, World Sci., 1992. [Original 1963.]
  11. M. M. Rao, Interpolation, ergodicity and martingales, J. Math. Mech. 16 (1966), 543-567.
  12. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  13. Z. D. Ren, Packing in Orlicz function spaces, Ph.D. Dissertation, University of California, Riverside, 1994.
  14. T. F. Wang, Packing constants of Orlicz sequence spaces, Chinese Ann. Math. Ser. A 8 (1987), 508-513 (in Chinese).
  15. T. F. Wang and Y. M. Liu, Packing constant of a type of sequence spaces, Comment. Math. Prace Mat. 30 (1990), 197-203.
  16. Y. N. Ye, Packing spheres in Orlicz sequence spaces, Chinese Ann. Math. Ser. A 4 (1983), 487-493 (in Chinese).
  17. Y. N. Ye and Y. H. Li, Geometric equivalence relation of reflexivity in Orlicz sequence space, Northeastern Math. J. 3 (1986), 309-323 (in Chinese).
Pages:
235-251
Main language of publication
English
Received
1996-07-10
Accepted
1997-05-15
Published
1997
Exact and natural sciences