ArticleOriginal scientific text

Title

Extrapolation methods to solve non-autonomous retarded partial differential equations

Authors 1, 2

Affiliations

  1. AGFA, Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
  2. Département de Mathématiques, Université Cadi Ayyad, B.P.: S.15, 40000 Marrakech, Maroc

Abstract

Using extrapolation spaces introduced by Da Prato-Grisvard and Nagel we prove a non-autonomous perturbation theorem for Hille-Yosida operators. The abstract result is applied to non-autonomous retarded partial differential equations.

Bibliography

  1. [Am] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, 1995.
  2. [Bu-Be] P. Butzer and H. Berens, Semigroups of Operators and Approximation, Springer, Berlin, 1967.
  3. [Cl] P. Clément et al., One-Parameter Semigroups, CWI Monographs 5, Amsterdam, 1987.
  4. [Cl1] P. Clément, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans, and H. R. Thieme, Perturbation theory for dual semigroups. I. The sun-reflexive case, Math. Ann. 277 (1987), 709-725.
  5. [Cl2] P. Clément, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans and H. R. Thieme, Perturbation theory for dual semigroups. II. Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), 145-172.
  6. [DaP-G] G. Da Prato and P. Grisvard, On extrapolation spaces, Rend. Accad. Naz. Lincei 72 (1982), 330-332.
  7. [Da-Sch-Zh] W. Desch, W. Schappacher, and K. P. Zhang, Semilinear evolution equations, Houston J. Math. 15 (1989), 527-552.
  8. [Di-vGi-Lu-Wa] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Functional-, Complex- and Nonlinear Analysis, Springer, 1995.
  9. [Go] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.
  10. [Ha] J. K. Hale, Theory of Functional Differential Equations, Springer, 1977.
  11. [Hi-Ph] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.
  12. [Li] J. L. Lions, Théorèmes de trace et d'interpolation, I, Ann. Scuola Norm. Sup. Pisa 13 (1959), 389-403.
  13. [Lu] A. Lunardi, Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations, Math. Nachr. 121 (1985), 295-318.
  14. [Lu1] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
  15. [Na] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, 1986.
  16. [Na1] R. Nagel (ed.), Sobolev spaces and semigroups, Semesterbericht Funktionalanalysis Tübingen (Sommersemester 1983), 1-19.
  17. [Na2] R. Nagel and E. Sinestrari, Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators, in: Lecture Notes in Pure and Appl. Math. 150, Marcel Dekker, 1994, 51-70.
  18. [vNe] J. van Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math. 1529, Springer, 1992.
  19. [Ni-Rh] G. Nickel and A. Rhandi, On the essential spectral radius of semigroups generated by perturbations of Hille-Yosida operators, Differential Integral Equations, to appear.
  20. [Pa] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
  21. [Ta] H. Tanabe, Equations of Evolution, Pitman, London, 1979.
  22. [Wa] T. Walther, Störungstheorie von Generatoren und Favard-Klassen, Dissertation, Tübingen, 1986.
Pages:
219-233
Main language of publication
English
Received
1996-03-25
Published
1997
Exact and natural sciences