ArticleOriginal scientific text

Title

On the range of convolution operators on non-quasianalytic ultradifferentiable functions

Authors 1, 2, 3

Affiliations

  1. Dpto. Matemática Aplicada, Universidad Politécnica, E-46071 Valencia, Spain
  2. Dpto. Análisis Matemático, Universidad de Valencia, E-46100 Burjasot (Valencia), Spain
  3. Mathematisches Institut, Heinrich-Heine-Universität, D-40225 Düsseldorf, Fed. Rep. of Germany

Abstract

Let (ω)(Ω) denote the non-quasianalytic class of Beurling type on an open set Ω in n. For μ(ω)(n) the surjectivity of the convolution operator Tμ:(ω)(Ω1)(ω)(Ω2) is characterized by various conditions, e.g. in terms of a convexity property of the pair (Ω1,Ω2) and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator Sμ:D{ω}(Ω1)D{ω}(Ω2) between ultradistributions of Roumieu type whenever μ{ω}(n). These results extend classical work of Hörmander on convolution operators between spaces of C-functions and more recent one of Ciorănescu and Braun, Meise and Vogt.

Bibliography

  1. C. A. Berenstein and M. A. Dostal, Analytically Uniform Spaces and Their Applications to Convolution Equations, Lecture Notes in Math. 256, Springer, 1972.
  2. K. D. Bierstedt, R. Meise and B. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160.
  3. J. Bonet and A. Galbis, The range of non-surjective convolution operators on Beurling spaces, Glasgow Math. J. 38 (1996), 125-135.
  4. J. Bonet, A. Galbis and S. Momm, Nonradial Hörmander algebras of several variables, manuscript.
  5. R. W. Braun, An extension of Komatsu's second structure theorem for ultradistributions, J. Fac. Sci. Univ. Tokyo 40 (1993), 411-417.
  6. W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237.
  7. W. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344-370.
  8. Chou, La Transformation de Fourier Complexe et l'Équation de Convolution, Lecture Notes in Math. 325, Springer, 1973.
  9. I. Ciorănescu, Convolution equations in ω-ultradistribution spaces, Rev. Roumaine Math. Pures Appl. 25 (1980), 719-737.
  10. L. Ehrenpreis, Solution of some problems of division, Part IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522-588.
  11. U. Franken and R. Meise, Generalized Fourier expansions for zero-solutions of surjective convolution operators on D'ℝ and Dω, Note Mat. 10, Suppl. 1 (1990), 251-272.
  12. O. v. Grudzinski, Konstruktion von Fundamentallösungen für Convolutoren, Manuscripta Math. 19 (1976), 283-317.
  13. S. Hansen, Das Fundamentalprinzip für Systeme linearer partieller Differentialgleichungen mit konstanten Koeffizienten, Habilitationsschrift, Paderborn, 1982.
  14. L. Hörmander, On the range of convolution operators, Ann. of Math. 76 (1962), 148-170.
  15. L. Hörmander, An Introduction to Complex Analysis in Several Variables, Princeton Univ. Press, 1967.
  16. L. Hörmander, The Analysis of Linear Partial Differential Operators I, II, Springer, 1983.
  17. H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25-105.
  18. M. Langenbruch, Surjective partial differential operators on spaces of ultradifferentiable functions of Roumieu type, Results Math. 29 (1996), 254-275.
  19. R. Meise and B. A. Taylor, Whitney's extension theorem for ultradifferentiable functions of Beurling type, Ark. Mat. 26 (1988), 265-287.
  20. R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756.
  21. R. Meise, B. A. Taylor and D. Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213-242.
  22. R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Univ. Press, 1997.
  23. T. Meyer, Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type, Studia Math. 125 (1997), 101-129.
  24. S. Momm, Closed ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), 47-55.
  25. S. Momm, Division problems in spaces of entire functions of finite order, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. Ruess and D. Vogt (eds.), Marcel Dekker, 1993, 435-457.
  26. S. Momm, A Phragmén-Lindelöf theorem for plurisubharmonic functions on cones in N, Indiana Univ. Math. J. 41 (1992), 861-867.
Pages:
171-198
Main language of publication
English
Received
1997-02-06
Accepted
1997-05-19
Published
1997
Exact and natural sciences