ArticleOriginal scientific text

Title

Perfect sets of finite class without the extension property

Authors 1, 2

Affiliations

  1. Department of Mathematics, Bilkent University, 06533 Ankara, Turkey
  2. Department of Mathematics, Civil Engineering University, Rostov-na-Donu, Russia

Abstract

We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.

Bibliography

  1. L. Białas-Cież, Equivalence of Markov's property and Hölder continuity of the Green function for Cantor-type sets, East J. Approx. 1 (1995), 249-253.
  2. E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300.
  3. A. Goncharov, A compact set without Markov's property but with an extension operator for C functions, Studia Math. 119 (1996), 27-35.
  4. A. Goncharov and M. Kocatepe, Isomorphic classification of the spaces of Whitney functions, to appear.
  5. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 5th ed., Academic Press, 1994.
  6. W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, 1976.
  7. N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966 (in Russian).
  8. R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992.
  9. B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16 (4) (1961), 59-127.
  10. R. Nevanlinna, Analytic Functions, Springer, 1970.
  11. Z. Ogrodzka, On simultaneous extension of infinitely differentiable functions, Studia Math. 28, (1967), 193-207.
  12. W. Pawłucki and W. Pleśniak, Markov's inequality and C functions on sets with polynomial cusps, Math. Ann. 275, (1986), 467-480.
  13. W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274.
  14. R. T. Seeley, Extension of C functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626.
  15. J. Siciak, Compact sets in n admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441-448.
  16. M. Tidten, Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312.
  17. M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu E(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.
  18. D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.
  19. V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Sev. Kavkaz. Nauch. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).
Pages:
161-170
Main language of publication
English
Received
1997-01-07
Accepted
1997-05-26
Published
1997
Exact and natural sciences