ArticleOriginal scientific text
Title
Perfect sets of finite class without the extension property
Authors 1, 2
Affiliations
- Department of Mathematics, Bilkent University, 06533 Ankara, Turkey
- Department of Mathematics, Civil Engineering University, Rostov-na-Donu, Russia
Abstract
We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.
Bibliography
- L. Białas-Cież, Equivalence of Markov's property and Hölder continuity of the Green function for Cantor-type sets, East J. Approx. 1 (1995), 249-253.
- E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300.
- A. Goncharov, A compact set without Markov's property but with an extension operator for
functions, Studia Math. 119 (1996), 27-35. - A. Goncharov and M. Kocatepe, Isomorphic classification of the spaces of Whitney functions, to appear.
- I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 5th ed., Academic Press, 1994.
- W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press, 1976.
- N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966 (in Russian).
- R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992.
- B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16 (4) (1961), 59-127.
- R. Nevanlinna, Analytic Functions, Springer, 1970.
- Z. Ogrodzka, On simultaneous extension of infinitely differentiable functions, Studia Math. 28, (1967), 193-207.
- W. Pawłucki and W. Pleśniak, Markov's inequality and
functions on sets with polynomial cusps, Math. Ann. 275, (1986), 467-480. - W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274.
- R. T. Seeley, Extension of
functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626. - J. Siciak, Compact sets in
admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441-448. - M. Tidten, Fortsetzungen von
-Funktionen, welche auf einer abgeschlossenen Menge in definiert sind, Manuscripta Math. 27 (1979), 291-312. - M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu E(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.
- D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.
- V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Sev. Kavkaz. Nauch. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).