For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy $H_A^1$ space associated with A. An atomic characterization of $H_A^1$ is shown.
[D] J. Dziubański, A note on Schrödinger operators with polynomial potentials, preprint.
[DHJ] J. Dziubański, A. Hulanicki, and J. W. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, Colloq. Math. 68 (1995), 7-16.
[Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
[FeS] C. Fefferman and E. Stein, $H^p$ spaces of several variables, Acta Math. 129 (1972), 137-193.
[FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982.
[G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557-582.
[Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
[He] W. Hebisch, On operators satisfying Rockland condition, preprint, Univ. of Wrocław.
[HN] B. Helffer et J. Nourrigat, Une inégalité $L^2$, preprint.
[S1] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, 1970.
[S2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, 1993.
[Z] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993.