ArticleOriginal scientific text

Title

Hardy spaces associated with some Schrödinger operators

Authors 1,

Affiliations

  1. Institute of Mathematics, University of Wrocław, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy HA1 space associated with A. An atomic characterization of HA1 is shown.

Bibliography

  1. [D] J. Dziubański, A note on Schrödinger operators with polynomial potentials, preprint.
  2. [DHJ] J. Dziubański, A. Hulanicki, and J. W. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, Colloq. Math. 68 (1995), 7-16.
  3. [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
  4. [FeS] C. Fefferman and E. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.
  5. [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982.
  6. [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557-582.
  7. [Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
  8. [He] W. Hebisch, On operators satisfying Rockland condition, preprint, Univ. of Wrocław.
  9. [HN] B. Helffer et J. Nourrigat, Une inégalité L2, preprint.
  10. [S1] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, 1970.
  11. [S2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, 1993.
  12. [Z] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993.
Pages:
149-160
Main language of publication
English
Received
1996-10-07
Accepted
1996-12-06
Published
1997
Exact and natural sciences