ArticleOriginal scientific text
Title
Hardy spaces associated with some Schrödinger operators
Authors 1,
Affiliations
- Institute of Mathematics, University of Wrocław, Plac Grunwaldzki 2/4, 50-384 Wrocław, Poland
Abstract
For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy space associated with A. An atomic characterization of is shown.
Bibliography
- [D] J. Dziubański, A note on Schrödinger operators with polynomial potentials, preprint.
- [DHJ] J. Dziubański, A. Hulanicki, and J. W. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, Colloq. Math. 68 (1995), 7-16.
- [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
- [FeS] C. Fefferman and E. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-193. - [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982.
- [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557-582.
- [Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
- [He] W. Hebisch, On operators satisfying Rockland condition, preprint, Univ. of Wrocław.
- [HN] B. Helffer et J. Nourrigat, Une inégalité
, preprint. - [S1] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, 1970.
- [S2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, 1993.
- [Z] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993.