ArticleOriginal scientific text

Title

Fixed points of Lipschitzian semigroups in Banach spaces

Authors 1

Affiliations

  1. Department of Mathematics, Rzeszów Institute of Technology, P.O. Box 85, 35-959 Rzeszów, Poland

Abstract

We prove the following theorem: Let p > 1 and let E be a real p-uniformly convex Banach space, and C a nonempty bounded closed convex subset of E. If T={Ts:CC:sG=[0,)} is a Lipschitzian semigroup such that g=limfGαfGδ01αʃα_0Tβ+δpdβ<1+c, where c > 0 is some constant, then there exists x ∈ C such that Tsx=x for all s ∈ G.

Keywords

Lipschitzian semigroup, fixed point, p-uniformly convex Banach space

Bibliography

  1. J.-B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach I, Séminaire d'Analyse Fonctionnelle 1978-1979, École Polytechnique, Centre de Mathématiques, Exposé 7, Nov. 1978.
  2. J. Barros-Neto, An Introduction to the Theory of Distributions, Dekker, New York, 1973.
  3. E. Casini and E. Maluta, Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1985), 103-108.
  4. T. Domínguez Benavides, Fixed point theorems for uniformly Lipschitzian mappings and asymptotically regular mappings, Nonlinear Anal., to appear.
  5. T. Domínguez Benavides, Geometric constants concerning metric fixed point theory: finite or infinite dimensional character, in: Proc. World Congress of Nonlinear Analysts, Athens, 1996, to appear.
  6. T. Domínguez Benavides and H. K. Xu, A new geometrical coefficient for Banach spaces and its applications in fixed point theory, Nonlinear Anal. 25 (1995), 311-325.
  7. D. J. Downing and W. O. Ray, Uniformly Lipschitzian semigroups in Hilbert space, Canad. Math. Bull. 25 (1982), 210-214.
  8. N. Dunford and J. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1958.
  9. P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
  10. K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135-140.
  11. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, London, 1990.
  12. K. Goebel, W. A. Kirk and R. L. Thele, Uniformly Lipschitzian families of transformations in Banach spaces, Canad. J. Math. 26 (1974), 1245-1256.
  13. J. Górnicki, A remark on fixed point theorems for Lipschitzian mappings, J. Math. Anal. Appl. 183 (1994), 495-508.
  14. J. Górnicki, The review of [6], Math. Rev. MR96e:47062.
  15. J. Górnicki, Lipschitzian semigroups in Hilbert space, in: Proc. World Congress of Nonlinear Analysts, Athens, 1996, to appear.
  16. J. Górnicki and M. Krüppel, Fixed points of uniformly Lipschitzian mappings, Bull. Polish Acad. Sci. Math. 36 (1988), 57-63.
  17. J. Górnicki and M. Krüppel, Fixed point theorems for mappings with Lipschitzian iterates, Nonlinear Anal. 19 (1992), 353-363.
  18. T. J. Huang and Y. Y. Huang, Fixed point theorems for uniformly Lipschitzian semigroups in metric spaces, Indian J. Pure Appl. Math. 26 (1995), 233-239.
  19. H. Ishihara, Fixed point theorems for Lipschitzian semigroups, Canad. Math. Bull. 32 (1989), 90-97.
  20. H. Ishihara and W. Takahashi, Fixed point theorems for uniformly Lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. 127 (1978), 206-210.
  21. M. Krüppel, Ungleichungen für den asymptotischen Radius in uniform konvexen Banach-Räumen mit Anwendungen in der Fixpunkttheorie, Rostock. Math. Kolloq. 48 (1995), 59-74.
  22. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN and UŚ, Warszawa-Kraków-Katowice, 1985.
  23. E. A. Lifshitz, Fixed point theorems for operators in strongly convex spaces, Voronezh. Gos. Univ. Trudy Mat. Fak. 16 (1975), 23-28 (in Russian).
  24. T. C. Lim, On some Lp inequalities in best approximation theory, J. Math. Anal. Appl. 154 (1991), 523-528.
  25. T. C. Lim, H. K. Xu and Z. B. Xu, An Lp inequality and its applications to fixed point theory and approximation theory, in: Progress in Approximation Theory, P. Nevai and A. Pinkus (eds.), Academic Press, New York, 1991, 609-624.
  26. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer, Berlin, 1979.
  27. N. Mizoguchi and W. Takahashi, On the existence of fixed points and ergodic retractions for Lipschitzian semigroups in Hilbert space, Nonlinear Anal. 14 (1990), 69-80.
  28. B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21.
  29. R. Smarzewski, Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points, ibid. 115 (1986), 155-172.
  30. R. Smarzewski, Strongly unique best approximation in Banach spaces, II, J. Approx. Theory 51 (1987), 202-217.
  31. R. Smarzewski, On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150.
  32. K. K. Tan and H. K. Xu, Fixed point theorems for Lipschitzian semigropus in Banach spaces, Nonlinear Anal. 20 (1993), 395-404.
  33. H. K. Xu, Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex Banach spaces, J. Math. Anal. Appl. 152 (1990), 391-398.
  34. H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138.
  35. C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344-374.
  36. L.-C. Zeng, On the existence of fixed points and nonlinear ergodic retractions for Lipschitzian semigroups without convexity, Nonlinear Anal. 24 (1995), 1347-1359.
Pages:
101-113
Main language of publication
English
Received
1996-04-22
Accepted
1996-12-06
Published
1997
Exact and natural sciences