ArticleOriginal scientific text

Title

Minimal pairs of bounded closed convex sets

Authors 1, 1

Affiliations

  1. Faculty of Mathematics and Computer Sciences, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Abstract

The existence of a minimal element in every equivalence class of pairs of bounded closed convex sets in a reflexive locally convex topological vector space is proved. An example of a non-reflexive Banach space with an equivalence class containing no minimal element is presented.

Keywords

convex analysis, pairs of convex sets

Bibliography

  1. V. F. Dem'yanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., New York, 1986.
  2. J. Grzybowski, Minimal pairs of compact convex sets, Arch. Math. (Basel) 63 (1994), 173-181.
  3. D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5.
  4. S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273.
  5. R. Urbański, A generalization of the Minkowski-Rå dström-Hörmander theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709-715.
  6. M. Wiernowolski, On amount of minimal pairs, Funct. Approx. Comment. Math. 23 (1994), 35-39.
Pages:
95-99
Main language of publication
English
Received
1997-02-24
Accepted
1997-04-17
Published
1997
Exact and natural sciences