ArticleOriginal scientific text
Title
Minimal pairs of bounded closed convex sets
Authors 1, 1
Affiliations
- Faculty of Mathematics and Computer Sciences, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Abstract
The existence of a minimal element in every equivalence class of pairs of bounded closed convex sets in a reflexive locally convex topological vector space is proved. An example of a non-reflexive Banach space with an equivalence class containing no minimal element is presented.
Keywords
convex analysis, pairs of convex sets
Bibliography
- V. F. Dem'yanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., New York, 1986.
- J. Grzybowski, Minimal pairs of compact convex sets, Arch. Math. (Basel) 63 (1994), 173-181.
- D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5.
- S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273.
- R. Urbański, A generalization of the Minkowski-Rå dström-Hörmander theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709-715.
- M. Wiernowolski, On amount of minimal pairs, Funct. Approx. Comment. Math. 23 (1994), 35-39.