ArticleOriginal scientific text
Title
Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates
Authors 1
Affiliations
- Departamento de Matemática, Instituto de Ciências Matemáticas de São Carlos, Universidade de São Paulo, Caixa Postal 668, São Carlos, SP 13.560-970, Brazil
Abstract
Let D be an open subset of a homogeneous space(X,d,μ). Consider the maximal function
, x∈ D,
where the supremum is taken over all balls of the form B = B(a(x),r) with r > t(x) = d(x,∂D), a(x)∈ ∂D is such that d(a(x),x) < 3/2 t(x) (ʃ_D [M_φ(f)]^q wdμ)^{1/q} ≤ c(ʃ_{∂D} |f|^p vdν)^{1/p} σdν = v^{1-p'}dν M_φ ℝ^{n+1}_+ M_φ f(x,t) = M_γ f(x,t) = sup_{r>t} 1/(ν(B(x,r))^{1-γ}) ʃ_{B(x,r)} |f|dν (x,t) ∈ ℝ^{n+1}_+ ℝ^n!$!.
Keywords
norm inequality, weight, maximal function, homogeneous space
Bibliography
- [C] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628.
- [MS] R. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270.
- [S1] E. T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308 (1988), 533-545.
- [SW1] E. T. Sawyer and R. L. Wheeden, Carleson conditions for the Poisson integral, Indiana Univ. Math. J. 40 (1991), 639-676.
- [SW2] E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874.
- [SWZ] E. Sawyer, R. L. Wheeden and S. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523-580.
- [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [W1] R. L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 (1993), 257-272.
- [W2] R. L. Wheeden, Norm inequalities for off-centered maximal operators, Publ. Mat. 37 (1993), 429-441.