ArticleOriginal scientific text

Title

Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates

Authors 1

Affiliations

  1. Departamento de Matemática, Instituto de Ciências Matemáticas de São Carlos, Universidade de São Paulo, Caixa Postal 668, São Carlos, SP 13.560-970, Brazil

Abstract

Let D be an open subset of a homogeneous space(X,d,μ). Consider the maximal function Mφf(x)=1φ(B)ʃBD|f|dν, x∈ D, where the supremum is taken over all balls of the form B = B(a(x),r) with r > t(x) = d(x,∂D), a(x)∈ ∂D is such that d(a(x),x) < 3/2 t(x)andφisanoegativesetfunctiondefedforallBorelsetsofXsatiygthequasi-mo¬onicityanddoublgerties.Wegiveacessaryandsufficientconditionontheweightswandvfortheweightedequality(0.1)(ʃ_D [M_φ(f)]^q wdμ)^{1/q} ≤ c(ʃ_{∂D} |f|^p vdν)^{1/p}holdwhen1<p<q<,σdν = v^{1-p'}dνisadoublgweight,anddνisadoublgmeasure,andgiveasufficientconditionfor(0.1)when1<pq<withoutasgtσ^isadoublgweightbutwithanextraasptiononφ.A¬hercharacterizationfor(0.1)isalsoprovdfor1<pq<andDoftheformY×(0,),whereYisahomoousspacewithgroupstructure.Theserest̲sralizesomeknowntheoremsthecasewhenM_φisthetionalmaximalfunctionℝ^{n+1}_+,ti^s,whenM_φ f(x,t) = M_γ f(x,t) = sup_{r>t} 1/(ν(B(x,r))^{1-γ}) ʃ_{B(x,r)} |f|dν,where(x,t) ∈ ℝ^{n+1}_+,0<γ<1,andνisadoublgmeasureℝ^n!$!.

Keywords

norm inequality, weight, maximal function, homogeneous space

Bibliography

  1. [C] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628.
  2. [MS] R. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270.
  3. [S1] E. T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308 (1988), 533-545.
  4. [SW1] E. T. Sawyer and R. L. Wheeden, Carleson conditions for the Poisson integral, Indiana Univ. Math. J. 40 (1991), 639-676.
  5. [SW2] E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874.
  6. [SWZ] E. Sawyer, R. L. Wheeden and S. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523-580.
  7. [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  8. [W1] R. L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 (1993), 257-272.
  9. [W2] R. L. Wheeden, Norm inequalities for off-centered maximal operators, Publ. Mat. 37 (1993), 429-441.
Pages:
67-94
Main language of publication
English
Received
1996-11-14
Accepted
1997-02-12
Published
1997
Exact and natural sciences