ArticleOriginal scientific text

Title

First and second order Opial inequalities

Authors 1

Affiliations

  1. Department of Mathematics, Siena College, Loudon Road, Loudonville, New York 12211, U.S.A.

Abstract

Let Tγf(x)=ʃ0xk(x,y)γf(y)dy, where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form ʃ0(i=1n|Tγif(x)|qi)|f(x)|q0w(x)dxC(ʃ0|f(x)|pv(x)dx)q0++qnp. Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent q0=0. When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold.

Bibliography

  1. M. Artola, untitled and unpublished manuscript.
  2. P. R. Beesack, Elementary proofs of some Opial-type inequalities, J. Anal. Math. 36 (1979), 1-14.
  3. P. R. Beesack and K. M. Das, Extensions of Opial's inequality, Pacific J. Math. 26 (1968), 215-232.
  4. S. Bloom and R. A. Kerman, Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc. 113 (1991), 135-141.
  5. D. W. Boyd, Inequalities for positive integral operators, Pacific J. Math. 38 (1971), 9-24.
  6. D. W. Boyd, Best constants in a class of integral inequalities, ibid. 30 (1969), 367-383.
  7. J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
  8. W. S. Cheung, Some new Opial-type inequalities, Mathematika 37 (1990), 136-142.
  9. J. D. Li, Opial-type inequalities involving several higher order derivatives, J. Math. Anal. Appl. 167 (1992), 98-110.
  10. F. J. Martín-Reyes and E. T. Sawyer, Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc. 106 (1989), 727-733.
  11. V. G. Maz'ja, Sobolev Spaces, Springer, Berlin, 1985.
  12. B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 34 (1972), 31-38.
  13. Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29-32.
  14. B. G. Pachpatte, On Opial type inequalities involving higher order derivatives, J. Math. Anal. Appl. 190 (1995), 763-773.
  15. E. T. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337.
  16. E. T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11.
  17. E. T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308 (1988), 533-545.
  18. G. J. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl. 160 (1991), 434-445.
  19. V. D. Stepanov, Two-weighted estimates for Riemann-Liouville integrals, Math. USSR-Izv. 36 (1991), 669-681.
  20. V. D. Stepanov, Weighted norm inequalities of Hardy type for a class of integral operators, Report/Institute for Applied Mathematics, Khabarovsk, 1992.
  21. G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185.
  22. G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. (4) 21 (1969), 622-631.
Pages:
27-50
Main language of publication
English
Received
1996-05-06
Accepted
1997-03-24
Published
1997
Exact and natural sciences