ArticleOriginal scientific text
Title
A restriction theorem for the Heisenberg motion
Authors 1, 1, 1
Affiliations
- Statistics and Mathematics unit, Indian Statistical Institute, 8th mile, Mysore Road, Bangalore 560 059, India
Abstract
We prove a restriction theorem for the class-1 representations of the Heisenberg motion group. This is done using an improvement of the restriction theorem for the special Hermite projection operators proved in [13]. We also prove a restriction theorem for the Heisenberg group.
Keywords
Hermite function, special Hermite function, Laguerre function, class-1 representation, Heisenberg motion group
Bibliography
- G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989.
- R. Gangolli, Spherical functions on semisimple Lie groups, in: Symmetric Spaces, W. Boothby and G. Weiss (eds.), Dekker, New York, 1972, 41-92.
- A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in
, Invent. Math. 62 (1980), 325-331. - C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37.
- D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. 131 (1990), 567-587.
- D. Müller, On Riesz means of eigenfunction expansions for the Kohn-Laplacian, J. Reine Angew. Math. 401 (1989), 113-121.
- J. Peetre and G. Sparr, Interpolation and non-commutative integration, Ann. Mat. Pura Appl. 104 (1975), 187-207.
- R. Rawat, A theorem of the Wiener-Tauberian type for
, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), 369-377. - C. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), 43-65.
- C. Sogge, Concerning the
norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-134. - E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
- R. Strichartz,
harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), 350-406. - S. Thangavelu, Weyl multipliers, Bochner-Riesz means and special Hermite expansions, Ark. Mat. 29 (1991), 307-321.
- S. Thangavelu, Restriction theorems for the Heisenberg group, J. Reine Angew. Math. 414 (1991), 51-65.
- S. Thangavelu, Some restriction theorems for the Heisenberg group, Studia Math. 99 (1991), 11-21.
- S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton Univ. Press, Princeton, N.J., 1993.