ArticleOriginal scientific text

Title

A restriction theorem for the Heisenberg motion

Authors 1, 1, 1

Affiliations

  1. Statistics and Mathematics unit, Indian Statistical Institute, 8th mile, Mysore Road, Bangalore 560 059, India

Abstract

We prove a restriction theorem for the class-1 representations of the Heisenberg motion group. This is done using an improvement of the restriction theorem for the special Hermite projection operators proved in [13]. We also prove a restriction theorem for the Heisenberg group.

Keywords

Hermite function, special Hermite function, Laguerre function, class-1 representation, Heisenberg motion group

Bibliography

  1. G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989.
  2. R. Gangolli, Spherical functions on semisimple Lie groups, in: Symmetric Spaces, W. Boothby and G. Weiss (eds.), Dekker, New York, 1972, 41-92.
  3. A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in n, Invent. Math. 62 (1980), 325-331.
  4. C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37.
  5. D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. 131 (1990), 567-587.
  6. D. Müller, On Riesz means of eigenfunction expansions for the Kohn-Laplacian, J. Reine Angew. Math. 401 (1989), 113-121.
  7. J. Peetre and G. Sparr, Interpolation and non-commutative integration, Ann. Mat. Pura Appl. 104 (1975), 187-207.
  8. R. Rawat, A theorem of the Wiener-Tauberian type for L1(Hn), Proc. Indian Acad. Sci. Math. Sci. 106 (1996), 369-377.
  9. C. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), 43-65.
  10. C. Sogge, Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-134.
  11. E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
  12. R. Strichartz, Lp harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), 350-406.
  13. S. Thangavelu, Weyl multipliers, Bochner-Riesz means and special Hermite expansions, Ark. Mat. 29 (1991), 307-321.
  14. S. Thangavelu, Restriction theorems for the Heisenberg group, J. Reine Angew. Math. 414 (1991), 51-65.
  15. S. Thangavelu, Some restriction theorems for the Heisenberg group, Studia Math. 99 (1991), 11-21.
  16. S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton Univ. Press, Princeton, N.J., 1993.
Pages:
1-12
Main language of publication
English
Received
1995-10-05
Accepted
1997-06-10
Published
1997
Exact and natural sciences