ArticleOriginal scientific textTauberian operators on
Title
Tauberian operators on spaces
Authors 1, 2
Affiliations
- Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander, Spain
- Departamento de Matemáticas, Facultad de Ciencias, Universidad de Oviedo, E-33007 Oviedo, Spain
Abstract
We characterize tauberian operators in terms of the images of disjoint sequences and in terms of the image of the dyadic tree in . As applications, we show that the class of tauberian operators is stable under small norm perturbations and that its perturbation class coincides with the class of all weakly precompact operators. Moreover, we prove that the second conjugate of a tauberian operator is also tauberian, and the induced operator is an isomorphism into. Also, we show that embeds isomorphically into the quotient of by any of its reflexive subspaces.
Bibliography
- T. Alvarez and M. González, Some examples of tauberian operators, Proc. Amer. Math. Soc. 111 (1991), 1023-1027.
- B. Beauzamy, Introduction to Banach Spaces and their Geometry, North-Holland Math. Stud. 68, North-Holland, 1985.
- W. J. Davis, T. Figiel, W. B. Johnson and A. Pe/lczy/nski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
- J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
- J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- P. Enflo and T. W. Starbird, Subspaces of
containing , Studia Math. 65 (1979), 203-225. - M. González, Properties and applications of tauberian operators, Extracta Math. 5 (1990), 91-107.
- M. González and A. Martínez-Abejón, Supertauberian operators and perturbations, Arch. Math. (Basel) 64 (1995), 423-433.
- M. González and V. M. Onieva, Characterizations of tauberian operators and other semigroups of operators, Proc. Amer. Math. Soc. 108 (1990), 399-405.
- R. H. Herman, Generalizations of weakly compact operators, Trans. Amer. Math. Soc. 132 (1968), 377-386.
- R. C. James, Characterizations of reflexivity, Studia Math. 23 (1964), 205-216.
- R. C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101-119.
- M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in
, Studia Math. 21 (1962), 161-176. - N. Kalton and A. Wilansky, Tauberian operators on Banach spaces, Proc. Amer. Math. Soc. 57 (1976), 251-255.
- A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1-26.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, 1979.
- A. Martínez-Abejón, Semigrupos de operadores y ultrapotencias, Ph.D. thesis, Universidad de Cantabria, 1994.
- D. P. Milman and V. D. Milman, The geometry of nested families with empty intersection. The structure of the unit sphere of a non-reflexive space, Mat. Sb. 66 (1965), 109-118 (in Russian); English transl.: Amer. Math. Soc. Transl. 85 (1969).
- R. Neidinger and H. P. Rosenthal, Norm-attainment of linear functionals on subspaces and characterizations of tauberian operators, Pacific J. Math. 118 (1985), 215-228.
- H. P. Rosenthal, On subspaces of
, Ann. of Math. 97 (1973), 344-373. - H. P. Rosenthal, Double dual types and the Maurey characterization of Banach spaces containing
, in: Texas Functional Analysis Seminar 1983-1984 (Austin, Tex.), Longhorn Notes, The Univ. of Texas Press, Austin, Tex., 1984, 1-37. - H. P. Rosenthal, On wide-(s) sequences and their applications to certain classes of operators, preprint.
- W. Schachermayer, For a Banach space isomorphic to its square the Radon-Nikodým and the Krein-Milman property are equivalent, Studia Math. 81 (1985), 329-339.
- D. G. Tacon, Generalized semi-Fredholm transformations, J. Austral. Math. Soc. Ser. A 34 (1983), 60-70.
- D. G. Tacon, Generalized Fredholm transformations, ibid. 37 (1984), 89-97.