ArticleOriginal scientific text
Title
Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities
Authors 1, 2
Affiliations
- Fachbereich Mathematik, Universität Oldenburg, D-26111 Oldenburg, Germany
- Mathematisches Seminar, Universität Kiel, D-24098 Kiel, Germany
Abstract
We determine the set of all triples 1 ≤ p,q,r ≤ ∞ for which the so-called Marcinkiewicz-Zygmund inequality is satisfied: There exists a constant c≥ 0 such that for each bounded linear operator , each n ∈ ℕ and functions ,
.
This type of inequality includes as special cases well-known inequalities of Paley, Marcinkiewicz, Zygmund, Grothendieck, and Kwapień. If such a Marcinkiewicz-Zygmund inequality holds for a given triple (p,q,r), then we calculate the best constant c ≥ 0 (with the only exception: the important case 1 ≤ p < r = 2 < q ≤ ∞); if such an inequality does not hold, then we give asymptotically optimal estimates for the graduation of these constants in n. Two problems of Gasch and Maligranda from [9] are solved; as a by-product we obtain best constants of several important inequalities from the theory of summing operators.
Bibliography
- G. Baumbach and W. Linde, Asymptotic behaviour of p-summing norms of identity operators, Math. Nachr. 78 (1977), 193-196.
- B. Carl and A. Defant, An inequality between the p- and (p,1)-summing norm of finite rank operators from C(K)-spaces, Israel J. Math. 74 (1991), 323-335.
- B. Carl and A. Defant, Tensor products and Grothendieck type inequalities of operators in
-spaces, Trans. Amer. Math. Soc. 331 (1992), 55-76. - A. Defant, Best constants for the norm of the complexification of operators between
-spaces, in: K. D. Bierstedt, A. Pietsch, W. M. Ruess and D. Vogt (eds.), Functional Analysis, Proc. Essen Conf., 1991, Lecture Notes in Pure and Appl. Math. 150, Dekker, 1993, 173-180. - A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, 1993.
- J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995.
- J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 104, North-Holland, 1985.
- D. J. H. Garling, Absolutely p-summing operators in Hilbert space, Studia Math. 38 (1970), 319-331.
- J. Gasch and L. Maligranda, On vector-valued inequalities of Marcinkiewicz-Zygmund, Herz and Krivine type, Math. Nachr. 167 (1994), 95-129.
- E. Gené, M. B. Marcus and J. Zinn, A version of Chevet's theorem for stable processes, J. Funct. Anal. 63 (1985), 47-73.
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1956), 1-79.
- C. Herz, The theory of p-spaces with application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.
- J. Hoffmann-Jøorgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186.
- M. Junge, Geometric applications of the Gordon-Lewis property, Forum Math. 6 (1994), 617-635.
- H. König, On the complex Grothendieck constant in the n-dimensional case, in: P. F. X. Müller and W. Schachermeyer (eds.), Proc. Strobl Conference on "Geometry of Banach spaces", London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 181-199.
- J. L. Krivine, Constantes de Grothendieck et fonctions de type positif sur les sphères, Adv. Math. 31 (1979), 16-30.
- S. Kwapień, On a theorem of L. Schwartz and its applications to absolutely summing operators, Studia Math. 38 (1970), 193-201.
- S. Kwapień, On operators factoring through
-space, Bull. Soc. Math. France Mém. 31-32 (1972), 215-225. - M. Ledoux and M. Talagrand, Probability in Banach Spaces, Ergeb. Math. Grenzgeb. 23, Springer, 1991.
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in
-spaces and applications, Studia Math. 29 (1968), 275-326. - J. Marcinkiewicz et A. Zygmund, Quelques inégalités pour les opérations linéaires, Fund. Math. 32 (1939), 113-121.
- B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces
, Astérisque 11 (1974). - B. Maurey et G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
- R. E. A. C. Paley, On a remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-264.
- A. Pietsch, Absolutely p-summing operators in
-spaces, Bull. Soc. Math. France Mém. 31-32 (1972), 285-315. - A. Pietsch, Operator Ideals, North-Holland, 1980.
- P. Saphar, Applications p-décomposantes et p-absolument sommantes, Israel J. Math. 11 (1972), 164-179.
- H. Vogt, Komplexifizierung von Operatoren zwischen
-Räumen, Diplomarbeit, Oldenburg, 1995.