ArticleOriginal scientific text

Title

Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities

Authors 1, 2

Affiliations

  1. Fachbereich Mathematik, Universität Oldenburg, D-26111 Oldenburg, Germany
  2. Mathematisches Seminar, Universität Kiel, D-24098 Kiel, Germany

Abstract

We determine the set of all triples 1 ≤ p,q,r ≤ ∞ for which the so-called Marcinkiewicz-Zygmund inequality is satisfied: There exists a constant c≥ 0 such that for each bounded linear operator T:Lq(μ)Lp(ν), each n ∈ ℕ and functions f1,...,fnLq(μ), (ʃ(n_{k=1}|Tfk|r)prdν)1pcT(ʃ(n_{k=1}|fk|r)qrdμ)1q. This type of inequality includes as special cases well-known inequalities of Paley, Marcinkiewicz, Zygmund, Grothendieck, and Kwapień. If such a Marcinkiewicz-Zygmund inequality holds for a given triple (p,q,r), then we calculate the best constant c ≥ 0 (with the only exception: the important case 1 ≤ p < r = 2 < q ≤ ∞); if such an inequality does not hold, then we give asymptotically optimal estimates for the graduation of these constants in n. Two problems of Gasch and Maligranda from [9] are solved; as a by-product we obtain best constants of several important inequalities from the theory of summing operators.

Bibliography

  1. G. Baumbach and W. Linde, Asymptotic behaviour of p-summing norms of identity operators, Math. Nachr. 78 (1977), 193-196.
  2. B. Carl and A. Defant, An inequality between the p- and (p,1)-summing norm of finite rank operators from C(K)-spaces, Israel J. Math. 74 (1991), 323-335.
  3. B. Carl and A. Defant, Tensor products and Grothendieck type inequalities of operators in Lp-spaces, Trans. Amer. Math. Soc. 331 (1992), 55-76.
  4. A. Defant, Best constants for the norm of the complexification of operators between Lp-spaces, in: K. D. Bierstedt, A. Pietsch, W. M. Ruess and D. Vogt (eds.), Functional Analysis, Proc. Essen Conf., 1991, Lecture Notes in Pure and Appl. Math. 150, Dekker, 1993, 173-180.
  5. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, 1993.
  6. J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995.
  7. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 104, North-Holland, 1985.
  8. D. J. H. Garling, Absolutely p-summing operators in Hilbert space, Studia Math. 38 (1970), 319-331.
  9. J. Gasch and L. Maligranda, On vector-valued inequalities of Marcinkiewicz-Zygmund, Herz and Krivine type, Math. Nachr. 167 (1994), 95-129.
  10. E. Gené, M. B. Marcus and J. Zinn, A version of Chevet's theorem for stable processes, J. Funct. Anal. 63 (1985), 47-73.
  11. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1956), 1-79.
  12. C. Herz, The theory of p-spaces with application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.
  13. J. Hoffmann-Jøorgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186.
  14. M. Junge, Geometric applications of the Gordon-Lewis property, Forum Math. 6 (1994), 617-635.
  15. H. König, On the complex Grothendieck constant in the n-dimensional case, in: P. F. X. Müller and W. Schachermeyer (eds.), Proc. Strobl Conference on "Geometry of Banach spaces", London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 181-199.
  16. J. L. Krivine, Constantes de Grothendieck et fonctions de type positif sur les sphères, Adv. Math. 31 (1979), 16-30.
  17. S. Kwapień, On a theorem of L. Schwartz and its applications to absolutely summing operators, Studia Math. 38 (1970), 193-201.
  18. S. Kwapień, On operators factoring through Lp-space, Bull. Soc. Math. France Mém. 31-32 (1972), 215-225.
  19. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Ergeb. Math. Grenzgeb. 23, Springer, 1991.
  20. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in p-spaces and applications, Studia Math. 29 (1968), 275-326.
  21. J. Marcinkiewicz et A. Zygmund, Quelques inégalités pour les opérations linéaires, Fund. Math. 32 (1939), 113-121.
  22. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp, Astérisque 11 (1974).
  23. B. Maurey et G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
  24. R. E. A. C. Paley, On a remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-264.
  25. A. Pietsch, Absolutely p-summing operators in Lr-spaces, Bull. Soc. Math. France Mém. 31-32 (1972), 285-315.
  26. A. Pietsch, Operator Ideals, North-Holland, 1980.
  27. P. Saphar, Applications p-décomposantes et p-absolument sommantes, Israel J. Math. 11 (1972), 164-179.
  28. H. Vogt, Komplexifizierung von Operatoren zwischen Lp-Räumen, Diplomarbeit, Oldenburg, 1995.
Pages:
271-287
Main language of publication
English
Received
1996-11-12
Published
1997
Exact and natural sciences