ArticleOriginal scientific text

Title

Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients

Authors 1, 1

Affiliations

  1. Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Abstract

Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) (k=1j=1|f̂(k,j)|p(kj)p-2)1pCpfHp_{} (1/2 < p≤2) where f belongs to the Hardy space Hp(Gm×Gs) defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.

Keywords

two-parameter martingales and Hardy spaces, rectangle p-atoms, Vilenkin functions, Hardy-Littlewood inequality

Bibliography

  1. J. Brossard, Comparaison des "normes" Lp du processus croissant et de la variable maximale pour les martingales régulières à deux indices. Théorème local correspondant, Ann. Probab. 8 (1980), 1183-1188.
  2. J. Brossard, Régularité des martingales à deux indices et inégalités de normes, in: Processus Aléatoires à Deux Indices, Lecture Notes in Math. 863, Springer, Berlin, 1981, 91-121.
  3. D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42.
  4. R. Cairoli, Une inégalité pour martingales à indices multiples et ses applications, in: Séminaire de Probabilités V, Lecture Notes in Math. 124, Springer, Berlin, (1970), 1-27.
  5. J. A. Chao, Hardy spaces on regular martingales, in: Martingale Theory in Harmonic Analysis and Banach Spaces, Lecture Notes in Math. 939, Springer, Berlin, 1982, 18-28.
  6. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  7. S. Fridli and P. Simon, On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system, Acta Math. Hungar. 45 (1985), 223-234.
  8. A. M. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress, Math. Lecture Notes Series, Benjamin, New York, 1973.
  9. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9.
  10. N. R. Ladhawala, Absolute summability of Walsh-Fourier series, Pacific J. Math. 65 (1976), 103-108.
  11. C. Métraux, Quelques inégalités pour martingales à paramètre bidimensionnel, in: Séminaire de Probabilités XII, Lecture Notes in Math. 649, Springer, Berlin, 1978, 170-179.
  12. F. Móricz, On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425.
  13. F. Móricz, On Walsh series with coefficients tending monotonically to zero, Acta Math. Acad. Sci. Hungar. 38 (1981), 183-189.
  14. F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990.
  15. P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 28 (1985), 87-101.
  16. P. Simon and F. Weisz, Hardy-Littlewood type inequalities for Vilenkin-Fourier coefficients, Anal. Math., to appear.
  17. N. Y. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 363-400 (in Russian); English transl.: Amer. Math. Soc. Transl. 28 (1963), 1-35.
  18. F. Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series, in: Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud. 5, Budapest, 1996, 353-367.
  19. F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233.
  20. F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  21. F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math. 117 (1996), 173-194.
  22. F. Weisz, Two-parameter Hardy-Littlewood inequalities, ibid. 118 (1996), 175-184.
Pages:
231-246
Main language of publication
English
Received
1996-05-30
Published
1997
Exact and natural sciences