ArticleOriginal scientific text
Title
On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1
Authors 1
Affiliations
- Institutionen för Naturvetenskap, Högskolan i Skövde, Box 408, 541 28 Skövde, Sweden
Abstract
Let P(z,β) be the Poisson kernel in the unit disk , and let be the λ -Poisson integral of f, where . We let be the normalization . If λ >0, we know that the best (regular) regions where converges to f for a.a. points on ∂ are of nontangential type.
If λ =0 the situation is different. In a previous paper, we proved a result concerning the convergence of toward f in an weakly tangential region, if and p > 1. In the present paper we will extend the result to symmetric spaces X of rank 1. Let f be an function on the maximal distinguished boundary K/M of X. Then will converge to f(kM) as x tends to kM in an weakly tangential region, for a.a. kM ∈ K/M.
Keywords
maximal function, square root of the Poisson kernel, convergence region, symmetric space of rank 1
Bibliography
- [He78] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, 1978.
- [DR92] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-248.
- [Kor85] A. Korányi, Geometric properties of Heisenberg-type groups, Adv. Math. 56 (1985), 28-38.
- [JOR] J.-O. Rönning, Convergence for square roots of Poisson kernels in weakly tangential regions, Math. Scand., to appear.
- [Sjö83] P. Sjögren, Fatou theorems and maximal functions for eigenfunctions of the Laplace-Beltrami operator in a bidisk, J. Reine Angew. Math. 345 (1983), 93-110.
- [Sjö84] P. Sjögren, A Fatou theorem for eigenfunctions of the Laplace-Beltrami operator in a symmetric space, Duke Math. J. 51 (1984), 47-56.
- [Sjö84a] P. Sjögren, Une remarque sur la convergence des fonctions propres du Laplacian à valeur propre critique, in: Lecture Notes in Math. 1096, Springer, 1984, 544-548.
- [Sjö88] P. Sjögren, Convergence for the square root of the Poisson kernel, Pacific J. Math. 131 (1988), 361-391.