ArticleOriginal scientific text

Title

An alternative Dunford-Pettis Property

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106, U.S.A.
  2. Department of Mathematics, Eastern Mediterranean University, Gazimağusa, TRNC, Mersin 10, Turkey

Abstract

An alternative to the Dunford-Pettis Property, called the DP1-property, is introduced. Its relationship to the Dunford-Pettis Property and other related properties is examined. It is shown that p-direct sums of spaces with DP1 have DP1 if 1 ≤ p < ∞. It is also shown that for preduals of von Neumann algebras, DP1 is strictly weaker than the Dunford-Pettis Property, while for von Neumann algebras, the two properties are equivalent.

Keywords

Dunford-Pettis Property, Kadec-Klee Property

Bibliography

  1. C. A. Akemann, Sequential convergence in the dual of a W*-algebra, Comm. Math. Phys. 7 (1968), 222-224.
  2. L. J. Bunce, The Dunford-Pettis property in the predual of a von Neumann algebra, Proc. Amer. Math. Soc. 116 (1992), 99-100.
  3. C. Chu and B. Iochum, The Dunford-Pettis property in C*-algebras, Studia Math. 97 (1990), 59-64.
  4. J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985.
  5. W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
  6. G. F. Dell'Antonio, On the limits of sequences of normal states, Comm. Pure Appl. Math. 20 (1967), 413-429.
  7. J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
  8. J. Diestel, A survey of results related to the Dunford-Pettis property, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 15-60.
  9. J. Diestel, Remarks on weak compactness in L1(μ,X), Glasgow Math. J. 18 (1977), 87-91.
  10. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras I, Academic Press, 1983.
  11. E. J. McShane, Linear functionals on certain Banach spaces, Proc. Amer. Math. Soc. 11 (1950), 402-408.
  12. M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
  13. J. Tomiyama, A characterization of C*-algebras whose conjugate spaces are separable, Tôhoku Math. J. 15 (1963), 96-102.
  14. P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge Univ. Press, 1991.
Pages:
143-159
Main language of publication
English
Received
1996-07-29
Accepted
1997-02-24
Published
1997
Exact and natural sciences