ArticleOriginal scientific text

Title

Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves

Authors 1, 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We show that in the class of compact, piecewise C1 curves K in n, the semialgebraic curves are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for the derivatives of (the traces of) polynomials on K.

Keywords

Bernstein and van der Corput-Schaake type inequalities, semialgebraic curves, algebraic manifolds, pluricomplex Green function, Lipschitz functions

Bibliography

  1. [Ba1] M. Baran, Plurisubharmonic extremal function and complex foliations for the complement of convex sets in n, Michigan Math. J. 39 (1992) 395-404.
  2. [Ba2] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in n, Proc. Amer. Math. Soc. 123 (1995) 485-494.
  3. [Ba3] M. Baran, Bernstein type theorems for compact sets in n revisited, J. Approx. Theory 79 (1994) 190-198.
  4. [Ba4] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994) 69-79.
  5. [BaPl] M. Baran and W. Pleśniak, Markov's exponent of compact sets in n, Proc. Amer. Math. Soc. 123 (9) (1995) 2785-2791.
  6. [BeRi] R. Benedetti and J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990.
  7. [Bern] S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. Roy. Belg. 4 (2) (1912) 1-103.
  8. [BLMT] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of N, Indiana Univ. Math. J. 44 (1995) 115-138.
  9. [BLT] L. Bos, N. Levenberg and B. A. Taylor, Characterization of smooth, compact algebraic curves in 2, in: Topics in Complex Analysis, P. Jakóbczak and W. Pleśniak (eds.), Banach Center Publ. 31, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 125-134.
  10. [BM1] L. Bos and P. Milman, On Markov and Sobolev type inequalities on compact subsets in n, in: Topics in Polynomials in One and Several Variables and Their Applications, T. Rassias et al. (eds.), World Scientific, Singapore, 1992, 81-100.
  11. [BM2] L. Bos and P. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal. 5 (1995) 853-923.
  12. [Chir] E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publ., Dordrecht, 1989.
  13. [CS1] J. G. van der Corput und G. Schaake, Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math. 2 (1935) 321-361.
  14. [CS2] J. G. van der Corput und G. Schaake, Berichtigung zu: Ungleichungen für Polynome und trigonometrische Polynome, ibid. 3 (1936) 128.
  15. [FeNa] C. Fefferman and R. Narasimhan, Bernstein's inequality on algebraic curves, Ann. Inst. Fourier (Grenoble) 43 (1993) 1319-1348.
  16. [Goe1] P. Goetgheluck, Inégalité de Markov dans les ensembles effilés, J. Approx. Theory 30 (1980) 149-154.
  17. [Goe2] P. Goetgheluck, Polynomial inequalities on general subsets of N, Colloq. Math. 57 (1989) 127-136.
  18. [Gon] A. Goncharov, A compact set without Markov's property but with an extension operator for C-functions, Studia Math. 119 (1996) 27-35.
  19. [Har] J. Harris, Algebraic Geometry, Springer, New York, 1992.
  20. [Hart] R. Hartshorne, Algebraic Geometry, Springer, New York, 1987.
  21. [Jon1] A. Jonsson, Markov's inequality on compact sets, in: Orthogonal Polynomials and Their Applications, C. Brezinski, L. Gori and A. Ronveaux (eds.), J. G. Bultzer AG, 1991, 309-313.
  22. [Jon2] A. Jonsson, Markov's inequality and zeros of orthogonal polynomials on fractal sets, J. Approx. Theory 78 (1994) 87-97.
  23. [Jos] B. Josefson, On the equivalence between locally and globally polar sets for plurisubharmonic functions in n, Ark. Mat. 16 (1978) 109-115.
  24. [K] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.
  25. [L] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.
  26. [Ł] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
  27. [MiRa] G. V. Milanović and T. M. Rassias, On Markov-Duffin-Schaeffer inequalities, J. Nat. Geometry 5 (1994) 29-41.
  28. [PP1] W. Pawłucki and W. Pleśniak, Markov's inequality and C functions on sets with polynomial cusps, Math. Ann. 275 (1986) 467-480.
  29. [PP2] W. Pawłucki and W. Pleśniak, Extension of C functions from sets with polynomial cusps, Studia Math. 88 (1988) 279-287.
  30. [Pl1] W. Pleśniak, On superposition of quasianalytic functions, Ann. Polon. Math. 26 (1972) 73-84.
  31. [Pl2] W. Pleśniak, Remarques sur une généralisation de l'inégalité de S. Bernstein, C. R. Acad. Sci. Paris Sér. A 284 (1977) 1211-1213.
  32. [Pl3] W. Pleśniak, Markov's inequality and the existence of an extension operator for C functions, J. Approx. Theory 61 (1990) 106-117.
  33. [Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502.
  34. [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.
  35. [Si2] J. Siciak, Extremal plurisubharmonic functions in n, Ann. Polon. Math. 39 (1981) 175-211.
  36. [Si3] J. Siciak, Rapid polynomial approximation on compact sets in n, Univ. Iagell. Acta Math. 30 (1993) 145-154.
  37. [Sin] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970.
  38. [Z] A. Zeriahi, Inégalités de Markov et développement en série de polynômes orthogonaux des fonctions C et A, in: Proc. Special Year of Complex Analysis of the Mittag-Leffler Institute 1987-88, J. F. Fornaess (ed.), Princeton Univ. Press, Princeton, N.J., 1993, 693-701.
Pages:
83-96
Main language of publication
English
Received
1996-12-02
Accepted
1997-02-24
Published
1997
Exact and natural sciences