ArticleOriginal scientific text

Title

Spreading sequences in JT

Authors 1, 1

Affiliations

  1. Centro de Investigación en Matemáticas, Apartado Postal 402, 36000 Guanajuato, Guanajuato, México

Abstract

We prove that a normalized non-weakly null basic sequence in the James tree space JT admits a subsequence which is equivalent to the summing basis for the James space J. Consequently, every normalized basic sequence admits a spreading subsequence which is either equivalent to the unit vector basis of l2 or to the summing basis for J.

Bibliography

  1. I. Amemiya and T. Ito, Weakly null sequences in James spaces on trees, Kodai Math. J. 4 (1981), 418-425.
  2. A. Andrew, Spreading basic sequences and subspaces of James' quasireflexive space, Math. Scand. 48 (1981), 109-118.
  3. B. Beauzamy et J.-T. Lapresté, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris 1984.
  4. G. Berg, On James spaces, Ph.D. thesis, The University of Texas, Austin, Texas, 1996.
  5. H. Fetter and B. Gamboa de Buen, The James Forest, London Math. Soc. Lecture Note Ser. 236, Cambridge Univ. Press, 1997.
  6. H. Fetter and B. Gamboa de Buen, The spreading models of the space =(JJ...)l2, Bol. Soc. Mat. Mexicana 2 (3) (1996), 139-146.
  7. J. Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289-308.
  8. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.
  9. R. C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
Pages:
57-66
Main language of publication
English
Received
1996-07-04
Accepted
1997-02-19
Published
1997
Exact and natural sciences