Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove that a normalized non-weakly null basic sequence in the James tree space JT admits a subsequence which is equivalent to the summing basis for the James space J. Consequently, every normalized basic sequence admits a spreading subsequence which is either equivalent to the unit vector basis of $l_2$ or to the summing basis for J.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
57-66
Opis fizyczny
Daty
wydano
1997
otrzymano
1996-07-04
poprawiono
1997-02-19
Twórcy
autor
- Centro de Investigación en Matemáticas, Apartado Postal 402, 36000 Guanajuato, Guanajuato, México, fetter@fractal.cimat.mx
autor
- Centro de Investigación en Matemáticas, Apartado Postal 402, 36000 Guanajuato, Guanajuato, México, gamboa@fractal.cimat.mx
Bibliografia
- [1] I. Amemiya and T. Ito, Weakly null sequences in James spaces on trees, Kodai Math. J. 4 (1981), 418-425.
- [2] A. Andrew, Spreading basic sequences and subspaces of James' quasireflexive space, Math. Scand. 48 (1981), 109-118.
- [3] B. Beauzamy et J.-T. Lapresté, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris 1984.
- [4] G. Berg, On James spaces, Ph.D. thesis, The University of Texas, Austin, Texas, 1996.
- [5] H. Fetter and B. Gamboa de Buen, The James Forest, London Math. Soc. Lecture Note Ser. 236, Cambridge Univ. Press, 1997.
- [6] H. Fetter and B. Gamboa de Buen, The spreading models of the space $𝕁=(J⨁ J⨁...)_{l_2}$, Bol. Soc. Mat. Mexicana 2 (3) (1996), 139-146.
- [7] J. Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289-308.
- [8] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.
- [9] R. C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv125i1p57bwm