ArticleOriginal scientific text

Title

Pointwise multipliers on weighted BMO spaces

Authors 1

Affiliations

  1. Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan

Abstract

Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for ϕ:X×++, we denote by bmoϕ,p(X) the set of all functions fLp_{loc}(X) such that supaX,r>01ϕ(a,r)(1μ(B(a,r))B(a,r)|f(x)-fB(a,r)|pdμ)1/p<, where B(a,r) is the ball centered at a and of radius r, and fB(a,r) is the integral mean of f on B(a,r). Let bmoϕ(X)=bmoϕ,1(X) and bmo(X)=bmo1,1(X). In this paper, we characterize PWM(bmoϕ1,p1(X),bmoϕ2,p2(X)). The following are examples of our results. PWM(bmo(log(1/r))-α(Tn),bmo(log(1/r))-β(Tn))=bmo(log(1/r))α-β-1(Tn), 0≤β < α < 1, PWM(bmo(log(1/r))-1(Tn),bmo(Tn))=bmo(loglog(1/r))-1(Tn), PWM(bmo(n),bmolog(|a|+r+1/r),p(n))=bmo(n), 1 < p < ∞, etc.

Keywords

multiplier, pointwise multiplier, bounded mean oscillation, space of homogeneous type

Bibliography

  1. H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), 135-153.
  2. S. Bloom, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 105 (1989), 950-960.
  3. R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
  4. R. R. Coifman et G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  5. Y. Gotoh, On multipliers for BMOϕ on general domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 339-354.
  6. S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196.
  7. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
  8. P. G. Lemarié, Algèbres d'opérateurs et semi-groupes de Poisson sur un espace de nature homogène, Publ. Math. Orsay 84-3 (1984).
  9. R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270.
  10. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
  11. B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106.
  12. E. Nakai, On the restriction of functions of bounded mean oscillation to the lower dimensional space, Arch. Math. (Basel) 43 (1984), 519-529.
  13. E. Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math. 105 (1993), 105-119.
  14. E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218.
  15. E. Nakai and K. Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Math. Japon. 46 (1997), to appear.
  16. S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1965), 593-608.
  17. D. A. Stegenga, Bounded Toeplitz operators on H1 and applications of the duality between H1 and the functions of bounded mean oscillation, Amer. Math. 98 (1976), 573-589.
  18. K. Yabuta, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 117 (1993), 737-744.
Pages:
35-56
Main language of publication
English
Received
1996-04-05
Accepted
1997-02-10
Published
1997
Exact and natural sciences