ArticleOriginal scientific text
Title
Pointwise multipliers on weighted BMO spaces
Authors 1
Affiliations
- Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan
Abstract
Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for , we denote by the set of all functions such that
,
where B(a,r) is the ball centered at a and of radius r, and is the integral mean of f on B(a,r). Let and . In this paper, we characterize . The following are examples of our results.
, 0≤β < α < 1,
, 1 < p < ∞, etc.
Keywords
multiplier, pointwise multiplier, bounded mean oscillation, space of homogeneous type
Bibliography
- H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), 135-153.
- S. Bloom, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 105 (1989), 950-960.
- R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
- R. R. Coifman et G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- Y. Gotoh, On multipliers for
on general domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 339-354. - S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196.
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
- P. G. Lemarié, Algèbres d'opérateurs et semi-groupes de Poisson sur un espace de nature homogène, Publ. Math. Orsay 84-3 (1984).
- R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270.
- B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106.
- E. Nakai, On the restriction of functions of bounded mean oscillation to the lower dimensional space, Arch. Math. (Basel) 43 (1984), 519-529.
- E. Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math. 105 (1993), 105-119.
- E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218.
- E. Nakai and K. Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Math. Japon. 46 (1997), to appear.
- S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1965), 593-608.
- D. A. Stegenga, Bounded Toeplitz operators on
and applications of the duality between and the functions of bounded mean oscillation, Amer. Math. 98 (1976), 573-589. - K. Yabuta, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 117 (1993), 737-744.