ArticleOriginal scientific textOn the spectral bound of the generator of a
Title
On the spectral bound of the generator of a -semigroup
Authors 1
Affiliations
- Department of Mathematics, Taras Shevchenko Kiev University, 64 Vladimirskaya St., 252601 Kiev, Ukraine
Abstract
We give several conditions implying that the spectral bound of the generator of a -semigroup is negative. Applications to stability theory are considered.
Bibliography
- C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc. 322 (1990), 783-804.
- C. J. K. Batty, Asymptotic behaviour of semigroups of operators, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 35-52.
- P. Clément et al., One-Parameter Semigroups, CWI Monograph 5, North-Holland, 1987.
- E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980.
- E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Colloq. Publ. 31, Amer. Math. Soc., Providence, R.I., 1957.
- K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- A. Lebow, Spectral radius of an absolutely continuous operator, Proc. Amer. Math. Soc. 36 (1972), 511-514.
- G. Mil'shteĭn, Extension of semigroups to locally convex spaces, Izv. Vuz. Mat. 2 (1977), 91-95 (in Russian).
- W. Mlak, On a theorem of Lebow, Ann. Polon. Math. 35 (1977), 107-109.
- J. van Neerven, The Asymptotic Behavior of Semigroups of Linear Operators, Oper. Theory Adv. Appl. 88, Birkhäuser, Basel, 1996.
- N. K. Nikol'skiĭ, A Tauberian theorem on the spectral radius, Siberian Math. J. 18 (1977), 1367-1372.
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
- M. Slemrod, Asymptotic behavior of
-semigroups as determined by the spectrum of the generator, Indiana Univ. Math. J. 25 (1976), 783-792. - G. Weiss, Weak
-stability of a linear semigroup on a Hilbert space implies exponential stability, J. Differential Equations 76 (1988), 269-285. - G. Weiss, Weakly
-stable operators are power stable, Internat. J. Systems Sci. 20 (1989), 2323-2328. - G. Weiss, The resolvent growth assumption for semigroups in Hilbert space, J. Math. Anal. Appl. 145 (1990), 154-171.
- V. Wrobel, Stability and spectra of
-semigroups, Math. Ann. 285 (1989), 201-219. - P. Yao and P. Feng, A characteristic condition for the exponential stability of
-semigroups, Chinese Sci. Bull. 39 (1994), 534-537. - J. Zabczyk, A note on
-semigroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 23 (1975), 895-898.