ArticleOriginal scientific text
Title
Constructions of cocycles over irrational rotations
Authors 1, 1, 2
Affiliations
- Department of Mathematics and Computer Science, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
- Department of Mathematics, University of Maryland, College Park, Maryland 20742, U.S.A.
Abstract
We construct a coboundary cocycle which is of bounded variation, is homotopic to the identity and is Hölder continuous with an arbitrary Hölder exponent smaller than 1.
Bibliography
- H. Anzai, Ergodic skew product transformations on the torus, Osaka J. Math. 3 (1951), 83-99.
- H. Furstenberg, Strict ergodicity and transformations on the torus, Amer. J. Math. 83 (1961), 573-601.
- P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mem. Soc. Math. France 119 (1991).
- M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. IHES 49 (1979), 5-234.
- A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95.
- A. B. Katok, Constructions in Ergodic Theory, unpublished lecture notes.
- A. V. Kochergin, On the homology of functions over dynamical systems, Dokl. Akad. Nauk SSSR 231 (1976), 795-798.
- M. Lemańczyk and Ch. Mauduit, Ergodicity of a class of cocycles over irrational rotations, J. London Math. Soc. 49 (1994), 124-132.
- D. Rudolph,
and cocycle extensions and complementary algebras, Ergodic Theory Dynam. Systems 6 (1986), 583-599. - A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959.