ArticleOriginal scientific text
Title
On a weak type (1,1) inequality for a maximal conjugate function
Authors 1, 1
Affiliations
- Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211 U.S.A.
Abstract
In their celebrated paper [3], Burkholder, Gundy, and Silverstein used Brownian motion to derive a maximal function characterization of spaces for 0 < p < ∞. In the present paper, we show that the methods in [3] extend to higher dimensions and yield a dimension-free weak type (1,1) estimate for a conjugate function on the N-dimensional torus.
Bibliography
- N. Asmar and S. J. Montgomery-Smith, Hahn's Embedding Theorem for orders and analysis on groups with ordered dual groups, Colloq. Math. 70 (1996), 235-252.
- D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304.
- D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal characterization of the class
, Trans. Amer. Math. Soc. 157 (1971), 137-153. - J. L. Doob, Stochastic Processes, Wiley Publ. Math. Statist., Wiley, New York, 1953.
- J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121.
- H. Helson, Conjugate series in several variables, Pacific J. Math. 9 (1959), 513-523.
- K. E. Petersen, Brownian Motion, Hardy Spaces and Bounded Mean Oscillation, London Math. Soc. Lecture Note Ser. 28, Cambridge Univ. Press, 1977.
- A. Zygmund, Trigonometric Series, 2nd ed., 2 vols., Cambridge Univ. Press, 1959.