ArticleOriginal scientific text

Title

On a weak type (1,1) inequality for a maximal conjugate function

Authors 1, 1

Affiliations

  1. Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211 U.S.A.

Abstract

In their celebrated paper [3], Burkholder, Gundy, and Silverstein used Brownian motion to derive a maximal function characterization of Hp spaces for 0 < p < ∞. In the present paper, we show that the methods in [3] extend to higher dimensions and yield a dimension-free weak type (1,1) estimate for a conjugate function on the N-dimensional torus.

Bibliography

  1. N. Asmar and S. J. Montgomery-Smith, Hahn's Embedding Theorem for orders and analysis on groups with ordered dual groups, Colloq. Math. 70 (1996), 235-252.
  2. D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304.
  3. D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal characterization of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137-153.
  4. J. L. Doob, Stochastic Processes, Wiley Publ. Math. Statist., Wiley, New York, 1953.
  5. J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121.
  6. H. Helson, Conjugate series in several variables, Pacific J. Math. 9 (1959), 513-523.
  7. K. E. Petersen, Brownian Motion, Hardy Spaces and Bounded Mean Oscillation, London Math. Soc. Lecture Note Ser. 28, Cambridge Univ. Press, 1977.
  8. A. Zygmund, Trigonometric Series, 2nd ed., 2 vols., Cambridge Univ. Press, 1959.
Pages:
13-21
Main language of publication
English
Received
1995-12-14
Published
1997
Exact and natural sciences