ArticleOriginal scientific text
Title
Multiplicative functionals and entire functions, II
Authors 1
Affiliations
- Southern Illinois University at Edwardsville, Edwardsville, Illinois 62026, U.S.A.
Abstract
Let A be a complex Banach algebra with a unit e, let F be a nonconstant entire function, and let T be a linear functional with T(e)=1 and such that T∘F: A → ℂ is nonsurjective. Then T is multiplicative.
Bibliography
- R. Arens, On a theorem of Gleason, Kahane and Żelazko, Studia Math. 87 (1987), 193-196.
- C. Badea, The Gleason-Kahane-Żelazko theorem, Rend. Circ. Mat. Palermo Suppl. 33 (1993), 177-188.
- J. B. Conway, Functions of One Complex Variable, Grad. Texts in Math. 11, Springer, 1986.
- J. B. Conway, Functions of One Complex Variable II, Grad. Texts in Math. 159, Springer, 1995.
- A. M. Gleason, A characterization of maximal ideals, J. Anal. Math. 19 (1967), 171-172.
- K. Jarosz, Generalizations of the Gleason-Kahane-Żelazko theorem, Rocky Mountain J. Math. 21 (1991), 915-921.
- K. Jarosz, Multiplicative functionals and entire functions, Studia Math. 119 (1996), 289-297.
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, ibid. 29 (1968), 339-343.
- W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, ibid. 30 (1968), 83-85.