ArticleOriginal scientific text

Title

Convergence of conditional expectations for unbounded closed convex random sets

Authors 1, 2, 3

Affiliations

  1. Département de Mathématiques, Case 051, Université Montpellier II, F-34095 Montpellier Cedex 5, France
  2. Département de Mathématiques Mohammed V, Faculté des Sciences Agdal, Rabat, Maroc F-34095 Montpellier Cedex 5, France
  3. CEREMADE, URA CNRS No 749, Université Paris-Dauphine, 75775 Paris Cedex 16, France

Abstract

We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form EnXn where (n) is a decreasing sequence of sub-σ-algebras and (Xn) is a sequence of closed convex random sets in a separable Banach space.

Bibliography

  1. [A] H. Attouch, Variational Convergence for Functions and Operators, Appl. Math. Ser., Pitman, Boston, 1984.
  2. [CE1] C. Castaing and F. Ezzaki, Variational inequalities for integrand martingales and additive random sequences, Acta Math. Vietnam. 18 (1993), 137-171.
  3. [CE2] C. Castaing and F. Ezzaki, SLLN for convex random sets and random lower semicontinuous integrands, preprint, Département de Mathématiques, Université Montpellier II, 1995.
  4. [CV] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, 1977.
  5. [Ch] A. Choukairi-Dini, Contribution à l'étude des martingales et au lemme de Fatou multivoque, Thèse, Université Montpellier II, 1988.
  6. [Co] J. Couvreux, Etude de problèmes de convergence et d'approximation de fonctionnelles intégrales et d'espérances conditionnelles multivoques, Thèse, Université Paris-Dauphine, 1995.
  7. [Ez1] F. Ezzaki, Contributions aux problèmes de convergence des suites adaptées et des ensembles aléatoires, Thèse, Université Montpellier II, 1993.
  8. [Ez2] F. Ezzaki, A general dominated convergence theorem for unbounded random sets, Bull. Polish Acad. Sci. Math. 44 (1996), 353-361.
  9. [He1] C. Hess, Lemme de Fatou et convergence dominée pour les ensembles aléatoires non bornés et des intégrandes, Sém. Analyse Convexe Montpellier, exp. no. 8, 1986.
  10. [He2] C. Hess, Convergence of conditional expectations for unbounded random sets, integrands, and integral functionals, Math. Oper. Res. 16 (1991), 627-649.
  11. [He3] C. Hess, Mesurabilité, convergence et approximation des multifonctions à valeurs dans un e.l.c.s., Sém. Analyse Convexe Montpellier, exp. no. 9, 1985.
  12. [He4] C. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), 226-229.
  13. [He5] C. Hess, Multivalued strong law of large numbers in the slice topology. Application to integrands, Set-Valued Anal. 2 (1994), 183-205.
  14. [Hi1] F. Hiai, Multivalued conditional expectations, multivalued Radon-Nikodym theorems, integral representation of additive operators and multivalued strong laws of large numbers, preprint, Conference of Catania, 1983.
  15. [Hi2] F. Hiai, Convergence of conditional expectations and strong laws of large numbers for multivalued random variables, Trans. Amer. Math. Soc. 291 (1985), 613-627.
  16. [HU] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182.
  17. [Mo] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math. 3 (1969), 151-155.
  18. [Ne] J. Neveu, Martingales à temps discret, Masson, 1972.
  19. [SZ] D. Szynal and W. Zięba, On some characterization of almost sure convergence, Bull. Polish Acad. Sci. Math. 34 (1986), 635-642.
  20. [We] R. Wets, Convergence of convex functions, variational inequalities and convex optimization problems, in: Variational Inequalities and Complementarity Problems, R. W. Cottle, F. Giannessi, and J. L. Lions (eds.), Wiley, Chichester, 1980, 375-403.
  21. [Zi] W. Zięba, On the L1_ convergence of conditional amarts, J. Multivariate Anal. 26 (1988), 104-110.
Pages:
133-148
Main language of publication
English
Received
1996-04-16
Published
1997
Exact and natural sciences