ArticleOriginal scientific text

Title

Reflexivity of isometries

Authors 1, 2

Affiliations

  1. Georgia Institute of Technology, Atlanta, Georgia 30332, U.S.A.
  2. Washington University, St. Louis, Missouri 63130, U.S.A.

Abstract

We prove that any set of commuting isometries on a separable Hilbert space is reflexive.

Bibliography

  1. H. Bercovici, A factorization theorem with applications to invariant subspaces and the reflexivity of isometries, preprint.
  2. H. Bercovici and W. S. Li, Reflexivity of certain pairs of commuting isometries, preprint.
  3. J. B. Conway, The Theory of Subnormal Operators, Amer. Math. Soc., Providence, 1991.
  4. J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512.
  5. D. Hadwin and E. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), 3-23.
  6. K. Horák and V. Müller, On commuting isometries, Czechoslovak Math. J. 43 (118) (1993), 373-382.
  7. J. E. McCarthy, Reflexivity of subnormal operators, Pacific J. Math. 161 (1993), 359-370.
  8. M. Ptak, Reflexivity of pairs of isometries, Studia Math. 83 (1986), 47-55.
  9. M. Ptak, Erratum to the paper "Reflexivity of pairs of isometries", ibid. 103 (1992), 221-223.
  10. D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1996), 511-517.
Pages:
101-105
Main language of publication
English
Received
1994-08-11
Accepted
1995-10-31
Published
1997
Exact and natural sciences