ArticleOriginal scientific text

Title

Two-sided estimates of the approximation numbers of certain Volterra integral operators

Authors 1, 2, 2

Affiliations

  1. Centre for Mathematical Analysis and its Applications, University of Sussex, Falmer, Brighton BN1 9QH, U.K.
  2. School of Mathematics, University of Wales, Cardiff, Senghennydd Road, Cardiff CF2 4YH, U.K.

Abstract

We consider the Volterra integral operator T:Lp(+)Lp(+) defined by (Tf)(x)=v(x)0xu(t)f(t)dt. Under suitable conditions on u and v, upper and lower estimates for the approximation numbers an(T) of T are established when 1 < p < ∞. When p = 2 these yield limnnan(T)=π-10|u(t)v(t)|dt. We also provide upper and lower estimates for the α and weak α norms of (an(T)) when 1 < α < ∞.

Bibliography

  1. C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
  2. M. Birman and M. Z. Solomyak, Estimates for the singular numbers of integral operators, Uspekhi Mat. Nauk 32 (1) (1977), 17-82 (in Russian); English transl.: Russian Math. Surveys 32 (1977).
  3. D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.
  4. D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. (2) 37 (1988), 471-489.
  5. D. E. Edmunds and V. D. Stepanov, On the singular numbers of certain Volterra integral operators, J. Funct. Anal. 134 (1995), 222-246.
  6. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1952.
  7. H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Boston, 1989.
  8. J. Newman and M. Solomyak, Two-sided estimates of singular values for a class of integral operators on the semi-axis, Integral Equations Operator Theory 20 (1994), 335-349.
  9. K. Nowak, Schatten ideal behavior of a generalized Hardy operator, Proc. Amer. Math. Soc. 118 (1993), 479-483.
Pages:
59-80
Main language of publication
English
Received
1996-03-22
Accepted
1997-01-13
Published
1997
Exact and natural sciences