ArticleOriginal scientific text
Title
Two-sided estimates of the approximation numbers of certain Volterra integral operators
Authors 1, 2, 2
Affiliations
- Centre for Mathematical Analysis and its Applications, University of Sussex, Falmer, Brighton BN1 9QH, U.K.
- School of Mathematics, University of Wales, Cardiff, Senghennydd Road, Cardiff CF2 4YH, U.K.
Abstract
We consider the Volterra integral operator defined by
.
Under suitable conditions on u and v, upper and lower estimates for the approximation numbers of T are established when 1 < p < ∞. When p = 2 these yield
.
We also provide upper and lower estimates for the and weak norms of when 1 < α < ∞.
Bibliography
- C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
- M. Birman and M. Z. Solomyak, Estimates for the singular numbers of integral operators, Uspekhi Mat. Nauk 32 (1) (1977), 17-82 (in Russian); English transl.: Russian Math. Surveys 32 (1977).
- D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.
- D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. (2) 37 (1988), 471-489.
- D. E. Edmunds and V. D. Stepanov, On the singular numbers of certain Volterra integral operators, J. Funct. Anal. 134 (1995), 222-246.
- G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1952.
- H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Boston, 1989.
- J. Newman and M. Solomyak, Two-sided estimates of singular values for a class of integral operators on the semi-axis, Integral Equations Operator Theory 20 (1994), 335-349.
- K. Nowak, Schatten ideal behavior of a generalized Hardy operator, Proc. Amer. Math. Soc. 118 (1993), 479-483.