ArticleOriginal scientific text
Title
Compact homomorphisms between algebras of analytic functions
Authors 1, 2, 3
Affiliations
- Department of Mathematics, Kent State University, Kent, Ohio 44242, U.S.A.
- Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
- Department of Mathematics, Åbo Akademi University, FIN-20500 Åbo, Finland
Abstract
We prove that every weakly compact multiplicative linear continuous map from into is compact. We also give an example which shows that this is not generally true for uniform algebras. Finally, we characterize the spectra of compact composition operators acting on the uniform algebra , where is the open unit ball of an infinite-dimensional Banach space E.
Bibliography
- [AAD] R. Alencar, R. M. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411.
- [ACG] R. M. Aron, B. J. Cole and T. W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93.
- [B1] J. Bourgain,
is a Grothendieck space, Studia Math. 75 (1982), 193-226. - [B2] J. Bourgain, New Banach space properties of the disc algebra and
, Acta Math. 152 (1984), 1-48. - [BP] A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166.
- [C] S. Chae, Holomorphy and Calculus in Normed Spaces, Marcel Dekker, 1985.
- [CM] J. Cima and A. Matheson, Completely continuous composition operators, Trans. Amer. Math. Soc. 344 (1994), 849-856.
- [De] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977), 284-294.
- [Di] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.
- [D] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland, 1981.
- [EH] C. Earle and R. Hamilton, A fixed point theorem for holomorphic mappings, in: Global Analysis, Proc. Sympos. Pure Math. 16, Amer. Math. Soc., 1970, 61-65.
- [GRW] J. E. Galé, T. J. Ransford and M. C. White, Weakly compact homomorphisms, Trans. Amer. Math. Soc. 331 (1992), 815-824.
- [Ga] T. Gamelin, Uniform Algebras, Chelsea, 1984.
- [G] G. Garnett, Bounded Analytic Functions, Academic Press, 1981.
- [Go] H. Goldmann, Uniform Fréchet Algebras, North-Holland, 1990.
- [HS] T. Hayden and T. Suffridge, Fixed points of holomorphic maps in Banach spaces, Proc. Amer. Math. Soc. 60 (1976), 95-105.
- [H] K. Hoffman, Analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111.
- [K] H. Kamowitz, Compact operators of the form
, Pacific J. Math. 80 (1979), 205-211. - [Ma] B. MacCluer, Spectra of compact composition operators on
, Analysis 4 (1984), 87-103. - [MM] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679-2687.
- [M1] J. Mujica, Linearization of bounded holomorphic mappings on Banach spaces, ibid. 324 (1991), 867-887.
- [M2] J. Mujica, Complex Analysis in Banach Spaces, North-Holland, 1986.
- [N] K. Ng, On a theorem of Dixmier, Math. Scand. 29 (1971), 279-280.
- [OW] S. Ohno and J. Wada, Compact homomorphisms on function algebras, Tokyo J. Math. 4 (1981), 105-112.
- [R] W. Rudin, Functional Analysis, McGraw-Hill, 1991.
- [Sa] D. Sarason, Weak Compactness of Holomorphic Composition Operators on
, Lecture Notes in Math. 1511, Springer, Berlin, 1990. - [S] M. Schechter, On the spectra of operators on tensor products, J. Funct. Anal. 4 (1969), 95-99.
- [Ü] A. Ülger, Some results about the spectrum of commutative Banach algebras under the weak topology and applications, Monatsh. Math. 121 (1996), 353-379.
- [W] K. Włodarczyk, On the existence and uniqueness of fixed points for holomorphic maps in complex Banach spaces, Proc. Amer. Math. Soc. 112 (1991), 983-987.