ArticleOriginal scientific text

Title

A Phragmén-Lindelöf type quasi-analyticity principle

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland

Abstract

Quasi-analyticity theorems of Phragmén-Lindelöf type for holomorphic functions of exponential type on a half plane are stated and proved. Spaces of Laplace distributions (ultradistributions) on ℝ are studied and their boundary value representation is given. A generalization of the Painlevé theorem is proved.

Keywords

quasi-analyticity, Laplace distributions, Laplace ultradistributions, boundary values

Bibliography

  1. [H] E. Hille, Analytic Function Theory, Vol. 2, Chelsea, New York, 1962.
  2. [K] H. Komatsu, Ultradistributions, I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25-105.
  3. [Ł1] G. Łysik, Generalized analytic functions and a strong quasi-analyticity principle, Dissertationes Math. 340 (1995), 195-200.
  4. [Ł2] G. Łysik, Laplace ultradistributions on a half line and a strong quasi-analyticity principle, Ann. Polon. Math. 63 (1996), 13-33.
  5. [M] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952.
  6. [R] C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup. 77 (1960), 41-121.
  7. [SZ] Z. Szmydt and B. Ziemian, The Laplace distributions on n_+, submitted to J. Math. Sci. Univ. Tokyo.
  8. [T] J. C. Tougeron, Gevrey expansions and applications, preprint, University of Toronto, 1991.
  9. [W] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, N.J., 1946.
  10. [Z] A. H. Zemanian, Generalized Integral Transformations, Interscience, 1969.
Pages:
217-234
Main language of publication
English
Received
1995-12-05
Accepted
1996-03-29
Published
1997
Exact and natural sciences