Download PDF - Spectral sets
ArticleOriginal scientific text
Title
Spectral sets
Authors 1
Affiliations
- Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia
Abstract
The paper studies spectral sets of elements of Banach algebras as the zeros of holomorphic functions and describes them in terms of existence of idempotents. A new decomposition theorem characterizing spectral sets is obtained for bounded linear operators.
Bibliography
- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
- H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978.
- N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217.
- N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1957.
- J. E. Galé, Weakly compact homomorphisms and semigroups in Banach algebras, J. London Math. Soc. 45 (1992), 113-125.
- H. Heuser, Functional Analysis, Wiley, New York, 1982.
- M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland Math. Stud. 9, North-Holland, Amsterdam, 1974.
- J. J. Koliha, Convergence of an operator series, Aequationes Math. 16 (1977), 31-35.
- J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424.
- M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175.
- M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
- C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, ibid. 117 (1993), 715-719.
- A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980.