ArticleOriginal scientific text

Title

Boundary higher integrability for the gradient of distributional solutions of nonlinear systems

Authors 1, 1

Affiliations

  1. Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Facoltà di Ingegneria, Università di Roma "La Sapienza", Via A. Scarpa 16, 00161 Roma, Italy

Abstract

We consider distributional solutions to the Dirichlet problem for nonlinear elliptic systems of the type {÷A(x,u,Du)=÷fΩ,u-u0W1,r_0(Ω) with r less than the natural exponent p which appears in the coercivity and growth assumptions for the operator A. We prove that DuW1,p(Ω) if |r-p| is small enough.

Bibliography

  1. H. Brezis, Analyse Fonctionnelle, théorie et applications, Masson, 1983.
  2. H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.
  3. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton, 1983.
  4. M. Giaquinta and G. Modica, Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math. 311//312 (1979), 145-169.
  5. E. Giusti, Metodi diretti del calcolo delle variazioni, Unione Matematica Italiana, 1994.
  6. T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136 (1992), 589-624.
  7. T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161.
  8. T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, preprint.
  9. D. Giachetti, F. Leonetti and R. Schianchi, On the regularity of very weak minima, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 287-296.
  10. D. Giachetti, F. Leonetti and R. Schianchi, Boundary regularity and uniqueness for very weak A harmonic functions, in preparation.
  11. N. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa 17 (1963), 189-206.
  12. N. Meyers and A. Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121-136.
  13. G. Moscariello, Weak minima and quasiminima of variational integrals, Boll. Un. Mat. Ital., to appear.
  14. G. Moscariello, On weak minima of certain integral functionals, preprint.
  15. B. Stroffolini, On weakly A-harmonic tensors, Studia Math. 114 (1995), 289-301.
Pages:
175-184
Main language of publication
English
Received
1996-07-10
Accepted
1996-09-23
Published
1997
Exact and natural sciences