Download PDF - On the semi-Browder spectrum
ArticleOriginal scientific text
Title
On the semi-Browder spectrum
Authors 1, 1, 2
Affiliations
- Institute of Mathematics AV ČR, Žitná 25, 11567 Praha 1, Czech Republic
- Department of Mathematics, Faculty of Philosophy, University of Niš, Ćirila and Metodija 2, 18000 Niš, Yugoslavia - Serbia
Abstract
An operator in a Banach space is called upper (lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion to n-tuples of commuting operators and show that this notion defines a joint spectrum. Further we study relations between semi-Browder and (essentially) semiregular operators.
Bibliography
- J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314.
- S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974.
- R. E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-413.
- S. Grabiner, Ascent, descent, and compact perturbations, ibid. 71 (1978), 79-80.
- S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
- R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, 1988.
- R. E. Harte and A. W. Wickstead, Upper and lower Fredholm spectra II, Math. Z. 154 (1977), 253-256.
- T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
- V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, Proc. Roy. Irish Acad., to appear.
- V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc., to appear.
- V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128.
- H. Kroh and P. Volkmann, Störungssätze für Semifredholmoperatoren, Math. Z. 148 (1976), 295-297.
- M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.
- M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129-147.
- M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisé dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836.
- V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380.
- M. Putinar, Functional calculus and the Gelfand transformation, Studia Math. 84 (1984), 83-86.
- V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
- V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209.
- V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 123 (1995), 3823-3825.
- V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (1996), 131-137.
- V. Rakočević, Semi-Fredholm operators with finite ascent or descent and corresponding spectra, in: Proc. Conf. in Priština, University of Priština, 1994, 79-89.
- C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.
- T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. 87 (1987), 137-146.
- W. Żelazko, Axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261.