ArticleOriginal scientific text

Title

On the semi-Browder spectrum

Authors 1, 1, 2

Affiliations

  1. Institute of Mathematics AV ČR, Žitná 25, 11567 Praha 1, Czech Republic
  2. Department of Mathematics, Faculty of Philosophy, University of Niš, Ćirila and Metodija 2, 18000 Niš, Yugoslavia - Serbia

Abstract

An operator in a Banach space is called upper (lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion to n-tuples of commuting operators and show that this notion defines a joint spectrum. Further we study relations between semi-Browder and (essentially) semiregular operators.

Bibliography

  1. J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314.
  2. S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974.
  3. R. E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-413.
  4. S. Grabiner, Ascent, descent, and compact perturbations, ibid. 71 (1978), 79-80.
  5. S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
  6. R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, 1988.
  7. R. E. Harte and A. W. Wickstead, Upper and lower Fredholm spectra II, Math. Z. 154 (1977), 253-256.
  8. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
  9. V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, Proc. Roy. Irish Acad., to appear.
  10. V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc., to appear.
  11. V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128.
  12. H. Kroh and P. Volkmann, Störungssätze für Semifredholmoperatoren, Math. Z. 148 (1976), 295-297.
  13. M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.
  14. M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129-147.
  15. M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisé dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836.
  16. V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380.
  17. M. Putinar, Functional calculus and the Gelfand transformation, Studia Math. 84 (1984), 83-86.
  18. V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
  19. V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209.
  20. V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 123 (1995), 3823-3825.
  21. V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (1996), 131-137.
  22. V. Rakočević, Semi-Fredholm operators with finite ascent or descent and corresponding spectra, in: Proc. Conf. in Priština, University of Priština, 1994, 79-89.
  23. C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.
  24. T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. 87 (1987), 137-146.
  25. W. Żelazko, Axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261.
Pages:
1-13
Main language of publication
English
Received
1995-08-07
Accepted
1996-08-09
Published
1997
Exact and natural sciences