Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1997 | 122 | 3 | 275-288

Tytuł artykułu

Cohomology groups, multipliers and factors in ergodic theory

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
The problem of compact factors in ergodic theory and its relationship with the problem of extending a cocycle to a cocycle of a larger action are studied.

Czasopismo

Rocznik

Tom

122

Numer

3

Strony

275-288

Daty

wydano
1997
otrzymano
1995-12-11
poprawiono
1996-08-28

Twórcy

  • Department of Mathematics and Computer Science, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Bibliografia

  • [1] V. Bargman, On unitary ray representations of continuous groups, Ann. of Math. 59 (1954), 1-46.
  • [2] A. I. Danilenko, Comparison of cocycles of a measured equivalence relation and lifting problems, Ergodic Theory Dynam. Systems, to appear.
  • [3] P. Gabriel, M. Lemańczyk and K. Schmidt, Extensions of cocycles for hyperfinite actions, and applications, Monatsh. Math. (1996), to appear.
  • [4] A. del Junco, M. Lemańczyk and M. K. Mentzen, Semisimplicity, joinings and group extensions, Studia Math. 112 (1995), 141-164.
  • [5] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), 531-557.
  • [6] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965), 397-403.
  • [7] J. Kwiatkowski, Factors of ergodic group extensions of rotations, Studia Math. 103 (1992), 123-131.
  • [8] M. Lemańczyk, Ergodic Compact Abelian Group Extensions of Rotations, Publ. N. Copernicus University, 1990 (habilitation).
  • [9] M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynam. Systems 10 (1990), 763-776.
  • [10] G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-169.
  • [11] M. K. Mentzen, Ergodic properties of group extensions of dynamical systems with discrete spectra, Studia Math. 101 (1991), 19-31.
  • [12] C. C. Moore and K. Schmidt, Coboundaries and homomorphisms for non-singular actions and a problem of H. Helson, Proc. London Math. Soc. 40 (1980), 443-475.
  • [13] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136.
  • [14] K. R. Parthasarathy, Multipliers on Locally Compact Groups, Lecture Notes in Math. 93, Springer, 1969.
  • [15] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Mac Millan of India, 1977.
  • [16] J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory, in: Ergodic Theory and its Connections with Harmonic Analysis, London Math. Soc., 1995, 207-235.
  • [17] W. A. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335-341.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-smv122i3p275bwm