ArticleOriginal scientific text

Title

L2 and Lp estimates for oscillatory integrals and their extended domains

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.
  2. Department of Mathematics, Auburn University, Auburn, Alabama 36849, U.S.A.
  3. Department of Mathematics, University of Kansas Lawrence, Kansas 66044, U.S.A.

Abstract

We prove the Lp boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function |x|α|y|β. Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.

Keywords

Lp boundedness, oscillatory integrals, extended domains, Calderón-Zygmund kernels

Bibliography

  1. [AS] Aronszajn, N. and Szeptycki, P., On general integral transformations, Math. Ann. 163 (1966), 127-154.
  2. [FS] J. J. F. Fournier and Stewart, J., Amalgams of Lp and lq, Bull. Amer. Math. Soc. 13 (1985), 1-21.
  3. [G] Gagliardo, E., On integral transformations with positive kernels, Proc. Amer. Math. Soc. 16 (1965), 429-434.
  4. [Ho] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983.
  5. [JS] Jurkat, W.B. and Sampson, G., The complete solution to the (Lp,Lq) mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413.
  6. [LS] Labuda, I. and Szeptycki, P., Extended domains of some integral operators with rapidly oscillating kernels, Nederl. Akad. Wetensch. Proc. 89 (1986), 87-98.
  7. [LS2] Labuda, Extensions of integral operators, Math. Ann. 281 (1988), 341-353.
  8. [M] Muckenhoupt, B., Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
  9. [Pan] Pan, Y., Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64.
  10. [PS] Phong, D.H. and Stein, E.M., Hilbert integrals, singular integrals, and Radon transforms I, Acta Math. 157 (1986), 99-157.
  11. [Sj] Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715.
  12. [St] Stein, E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
  13. [Sz] Szeptycki,P., Extended domains of some integral operators, Rocky Mountain J. Math. 22 (1992), 393-404.
  14. [Wal] Walther, B.G., Maximal estimates for oscillatory integrals with concave phase, preprint, 1994.
  15. [Zyg] Zygmund, A., Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.
Pages:
201-224
Main language of publication
English
Received
1995-07-24
Accepted
1996-07-24
Published
1997
Exact and natural sciences