ArticleOriginal scientific text

Title

On log-subharmonicity of singular values of matrices

Authors 1

Affiliations

  1. Département de mathématiques et de statistique, Faculté des sciences et de génie, Université Laval, Québec, Canada, G1K 7P4

Abstract

Let F be an analytic function from an open subset Ω of the complex plane into the algebra of n×n matrices. Denoting by s1,...,sn the decreasing sequence of singular values of a matrix, we prove that the functions logs1(F(λ))+...+logsk(F(λ)) and log+s1(F(λ))+...+log+sk(F(λ)) are subharmonic on Ω for 1 ≤ k ≤ n.

Bibliography

  1. B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
  2. B. Aupetit et A. Iyamuremye, Sous-harmonicité de la partie de Riesz du spectre d'un opérateur, Ann. Sci. Math. Québec 12 (1988), 171-177.
  3. H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Basel, 1986.
  4. O. Nevanlinna, A characteristic function for matrix valued meromorphic functions, Helsinki University of Technology, Institute of Mathematics Research Report A 355, 1995.
  5. O. Nevanlinna, Meromorphic resolvents and power bounded operators, Helsinki University of Technology, Institute of Mathematics Research Report A 358, 1996.
Pages:
195-200
Main language of publication
English
Received
1996-06-28
Published
1997
Exact and natural sciences